More stories

  • in

    Il cromosoma Y sta scomparendo?

    Per quanto piccolo e diverso dagli altri, il cromosoma Y è fondamentale nella determinazione del sesso degli esseri umani, di molti altri mammiferi e perfino di alcuni insetti. Quando è presente, alcuni suoi geni determinano lo sviluppo del sesso maschile (XY) rispetto a quello femminile (XX), ma nonostante il ruolo centrale per la nostra esistenza sappiamo ancora relativamente poco di questo particolare cromosoma. A dirla tutta, non sappiamo nemmeno se continuerà a farci compagnia per sempre: secondo alcune ipotesi molto dibattute, il cromosoma Y si starebbe impoverendo sempre di più e prima o poi potrebbe sparire, portando a profondi cambiamenti nella riproduzione della nostra specie.Un passo indietro, cosa sono i cromosomiUn cromosoma è formato da un’intera catena di DNA e da un gruppo di proteine che lo rendono stabile. Questa catena è costituita da tanti pezzetti (sequenze) che delimitano i geni contenenti le istruzioni per produrre le proteine, che a loro volta insieme alle molecole formano le cellule e i tessuti degli organi. Gli individui sono quasi tutti diversi in buona parte per via dei cambiamenti che si verificano nel loro codice genetico, spesso a causa di mutazioni dovute a errori casuali di trascrizione del DNA quando questo viene ereditato dalle nuove cellule.
    Tendiamo a immaginare i cromosomi come piccole capsule che contengono al loro interno il DNA, ma in realtà un cromosoma passa buona parte della propria esistenza nel nucleo in una forma piuttosto disordinata che ricorda quella di un piatto di spaghetti. Solo quando avviene la riproduzione cellulare i cromosomi si organizzano in piccole matasse, in modo da avere una struttura più resistente e adatta per la loro duplicazione.
    Rappresentazione schematica dei cromosomi nel nucleo di una cellula, a sinistra, e disposizione dei cromosomi a coppie (“cariotipo”) durante la riproduzione cellulare, a destra (Zanichelli, Wikimedia)
    Il genoma umano, cioè l’intero insieme di geni che determinano come è fatto ciascuno di noi, è raccolto in 23 paia di cromosomi: queste sono presenti in praticamente tutte le cellule dell’organismo, che contengono quindi ognuna una copia di tutto il materiale genetico. Naturalmente ogni cellula utilizza solo la parte necessaria a svolgere le proprie funzioni, quindi per esempio una cellula del fegato utilizzerà i geni che riguardano quell’organo, mentre “spegnerà” tutti gli altri geni di cui non ha bisogno.
    Varianti e mutazioniOgni coppia di cromosomi è formata da un cromosoma proveniente dalla femmina e da uno proveniente dal maschio. Due organismi non imparentati della stessa specie hanno cromosomi pressoché identici, ma se li si analizza con maggiore attenzione a livello genetico si possono notare piccole varianti in alcune sequenze del loro DNA. Queste mutazioni nel codice possono fare una grande differenza in come appare e funziona un organismo rispetto a un altro. Alcune differenze sono più evidenti, come il colore degli occhi o dei capelli, altre sono nascoste e possono riguardare il rischio di essere più esposti a certe malattie.
    Le mutazioni sono il frutto di cambiamenti o errori di trascrizione avvenuti tantissimo tempo fa e trasmesse di generazione in generazione: possono essere comuni a un’intera popolazione, oppure uniche e specifiche per ogni individuo. Si possono essere verificate negli spermatozoi o nelle cellule uovo, che si sono poi fuse insieme per portare a un nuovo organismo, oppure possono essere avvenute nelle prime fasi dello sviluppo. In un modo o nell’altro, queste mutazioni diventano parte integrante del materiale genetico di un individuo e saranno presenti in tutte le cellule, costituendo in alcuni casi nuove informazioni genetiche che faranno funzionare in un modo lievemente diverso alcuni tipi di cellule.
    X e YNei mammiferi placentati (cioè dotati di una placenta che consente all’embrione di nutrirsi e respirare nella sua fase di sviluppo) e in alcuni altri animali ci sono due cromosomi che si distinguono dagli altri: X e Y. Sono cromosomi sessuali (“eterosomi”) e, come suggerisce il nome, sono responsabili della determinazione del sesso di un individuo (si distinguono quindi da tutti gli altri cromosomi che sono detti “autosomi”). Mentre le coppie normali di cromosomi contengono gli stessi geni, gli eterosomi contengono ciascuno geni specifici che determinano i caratteri legati al sesso.
    Capire che esistessero cromosomi sessuali non fu semplice. Il primo ad accorgersi del caso particolare del cromosoma X fu il biologo cellulare tedesco Hermann Henking, che nel 1891 si era accorto del particolare comportamento in un insetto di un cromosoma che non prendeva parte a un processo di divisione cellulare (meiosi). Non essendo sicuro di che cosa avesse osservato, Henking lo aveva chiamato “elemento X” e solo in seguito divenne chiaro che si trattava effettivamente di un cromosoma, che conservò quindi quel nome: X.
    Da quell’incognita si sarebbe generato uno dei più grandi fraintendimenti della genetica. La maggior parte delle persone è infatti convinta che il cromosoma X sia chiamato così per via della sua somiglianza alla lettera X, ma in realtà come abbiamo visto i cromosomi appaiono informi nel nucleo e si organizzano solamente al momento della riproduzione cellulare.
    All’inizio del Novecento fu proposto per la prima volta che il cromosoma X fosse coinvolto nella determinazione del sesso, ma con la scorretta ipotesi che determinasse il sesso maschile. Le cose cambiarono nel 1905 quando la genetista statunitense Nettie Stevens identificò il cromosoma Y. Sapendo che i cromosomi funzionano in coppia, ipotizzo che Y fosse il compagno di X, scoperto quattordici anni prima. Per questo motivo decise di chiamarlo Y, semplicemente perché nell’ordine alfabetico veniva dopo X, e non per via della sua forma che solo con molta fantasia ricorda quella della lettera.
    La scoperta del cromosoma Y smontò l’ipotesi che fosse il cromosoma X a determinare il sesso maschile. La conferma arrivò con gli studi del biologo statunitense Theophilus Painter, che all’inizio degli anni Venti del secolo scorso dimostrò che sono i cromosomi X e Y a determinare il sesso, in base alla presenza o meno di Y.
    RiproduzioneNegli spermatozoi e nelle cellule uovo non ci sono coppie di cromosomi come nella maggior parte delle altre cellule, ma una sola copia di ogni cromosoma. In questo modo, dalla loro unione nel processo di fecondazione si ottengono cellule che contengono una copia di cromosomi provenienti dalla femmina e una copia dal maschio. Dalla prima si avrà sempre un cromosoma X, mentre dal secondo ci sarà la stessa probabilità di avere un cromosoma X o Y. È quindi il maschio a determinare il sesso, ma come ciò avvenga di preciso rimase un mistero per molti anni.
    (Zanichelli)
    Le risposte arrivarono nel 1990 quando fu identificato per la prima volta il gene SRY (dalle iniziali di “sex region on the Y”), che innesca i meccanismi che portano allo sviluppo maschile nell’embrione. A 12 settimane circa dal concepimento, SRY interviene sul funzionamento di altri geni che regolano lo sviluppo delle cellule che costituiranno poi i testicoli. La loro presenza induce la produzione degli ormoni maschili (come il testosterone), che nel corso della gravidanza condizioneranno lo sviluppo degli altri tratti maschili.
    Quella scoperta fu molto importante per capire i meccanismi di differenziazione, ma portò anche a un’altra constatazione: il cromosoma Y contiene pochissime altre informazioni, se confrontato con il suo compagno X. Si stima che il cromosoma X contenga infatti un migliaio di geni che fanno un sacco di cose, non solo legate al sesso, mentre invece il cromosoma Y contiene circa 55 geni e molto altro materiale genetico che allo stato delle attuali conoscenze non fa praticamente nulla. E questo ha diverse implicazioni.
    La più evidente è che i maschi fanno ampiamente affidamento sul cromosoma X proveniente dalla femmina per lo sviluppo di alcune funzionalità, semplicemente perché quelle istruzioni non sono disponibili anche sul cromosoma Y. Non è una cosa da poco: significa che per alcune funzionalità non ci sono alternative e questo spiega perché certe condizioni genetiche riguardano quasi esclusivamente gli individui di sesso maschile. Negli individui di sesso femminile la presenza di due cromosomi X fa sì che ci sia un’alternativa, o meglio, che ogni cellula utilizzi le istruzioni provenienti dalla femmina o dal maschio, disattivando le altre.
    Un’altra conseguenza piuttosto evidente è che un solo cromosoma X è sufficiente per avere le istruzioni necessarie per lo sviluppo di alcune caratteristiche e funzioni dell’organismo. E proprio partendo da questa constatazione alcuni anni fa la genetista australiana Jenny Graves iniziò a chiedersi come mai il cromosoma Y fosse fatto in quel modo e in sostanza fosse più povero del suo compagno X.
    La scomparsa di YStudiando la grande varietà di modi in cui viene determinato il sesso tra le specie del regno animale, Graves ipotizzò che fino a qualche tempo fa X e Y non avessero particolari differenze, se consideriamo una scala del tempo molto ampia come quella dei processi evolutivi. Dal confronto con altre specie, Graves calcolò che il cromosoma Y avesse perso centinaia di geni rimanendo con 55 nel corso di 166 milioni di anni, quindi al ritmo di circa cinque geni ogni milione di anni. Mantenendo quella cadenza, ipotizzò che entro 11 milioni di anni il cromosoma Y avrebbe perso anche i restanti 55 geni diventando del tutto inutile, anche nei meccanismi di determinazione del sesso.
    Graves pubblicò il proprio studio sulla rivista scientifica Nature nel 2002 e tornò sull’argomento, con nuove ricerche e analisi, negli anni seguenti suscitando grande clamore e aprendo un dibattito molto agguerrito tra chi studia i cromosomi. Il confronto si fece in più occasioni acceso, con conferenze in cui Graves difendeva la propria ipotesi della scomparsa del cromosoma Y da chi invece provava a confutare le sue teorie. Fu per esempio segnalato che non si poteva immaginare una degradazione lineare nel tempo del cromosoma Y, la cui perdita di geni era magari avvenuta in modi più netti nel corso dell’evoluzione per poi interrompersi.
    Il dibattito scientifico è ancora oggi aperto perché non si è raggiunto un consenso sulla base dei dati e degli studi disponibili, ma c’è comunque una certa tendenza verso un’ipotesi più tranquillizzante per gli affezionati al cromosoma Y. È basata su uno studio pubblicato nel 2014, sempre su Nature, che segnala come il cromosoma si sia stabilizzato insieme al resto del corredo genetico degli esseri umani. Nei 25 milioni di anni da quando è iniziata la differenziazione dalle altre scimmie, la nostra specie ha di fatto perso pochissimi geni. Non ci sarebbero quindi elementi per ritenere che il cromosoma Y continui a perdere pezzi e a rimpicciolirsi fino a diventare completamente irrilevante.
    Graves e altri genetisti non sono però completamente convinti, anche perché esistono già oggi alcune specie di mammiferi che hanno perso il cromosoma Y e continuano comunque a esistere. Studiando i roditori appartenenti alla specie Tokudaia osimensis, per esempio, un gruppo di ricerca ha scoperto che buona parte dei geni un tempo su Y è diventata disponibile su altri cromosomi di questi animali, ma non ha invece trovato tracce del gene SRY che innesca la differenziazione sessuale nell’embrione, né geni che svolgano la medesima funzione.
    In uno studio pubblicato su PNAS nell’autunno del 2022, il gruppo di ricerca ha in compenso segnalato di avere trovato alcune sequenze genetiche presenti solamente nel genoma dei maschi e non delle femmine di quei roditori. Analizzandole hanno scoperto che probabilmente quelle minime differenze intervengono sul gene SOX9 (che non si trova nei cromosomi sessuali), che ha un ruolo fondamentale nella determinazione dei maschi nei vertebrati e che viene solitamente attivato dopo l’intervento di SRY. In altre parole: in alcune specie prive del cromosoma Y potrebbe esserci un meccanismo alternativo per portare alla differenziazione sessuale.
    L’eventuale scomparsa del cromosoma Y negli esseri umani potrebbe quindi essere accompagnata da altri cambiamenti, tali da offrire un sistema alternativo per la determinazione del sesso. Potrebbero però esserci conseguenze, per esempio legate all’evolversi di più sistemi in diverse parti del mondo. In milioni di anni questa circostanza potrebbe portare alla comparsa di nuove specie di esseri umani, come del resto è avvenuto in quei gruppi di roditori. È una prospettiva affascinante, ma nel campo dell’evoluzione con le sue innumerevoli variabili è davvero difficile fare previsioni.
    Vie alternativeLa recente mappatura completa delle informazioni genetiche contenute nel cromosoma Y potrebbe offrire nuovi spunti, ma questa storia ci ricorda soprattutto che in natura ci sono modi molto diversi tra loro per la determinazione del sesso. Il risultato è quasi sempre lo stesso, cioè una distribuzione relativamente omogenea di maschi e femmine, ma il modo per arrivarci può essere spesso creativo e al di là della più fervida immaginazione di qualche autore di romanzi fantasy o distopici.
    La determinazione del sesso nei rettili e negli uccelli è su base genetica come la nostra, ma è la femmina e non il maschio a essere determinante. Una coppia di cromosomi Z porta a un maschio, di conseguenza le cellule sessuali dei maschi possono dare solo un cromosoma Z (come abbiamo visto, nelle cellule sessuali i cromosomi non sono in coppia), mentre le femmine sono ZW e quindi possono dare o un cromosoma Z o uno W. Anche in questo caso c’è una probabilità del 50 per cento che il nuovo individuo sia maschio o femmina, proprio come nei mammiferi.
    In alcune specie di insetti come api e formiche le cose funzionano diversamente. La riproduzione spetta a un’unica femmina, la regina, che può decidere se usare o meno lo sperma prodotto dal gruppo di maschi fertili che le fanno compagnia. Se lo utilizza produce uova dalle quali nascono solo femmine, se non lo utilizza depone uova dalle quali nasceranno solamente maschi. Questo significa che i maschi di formica derivano solo da una femmina, la regina, e mai da un maschio: il loro intero corredo genetico deriva da un unico genitore. Per un sistema complesso che si basa sull’attività di migliaia di individui, come un formicaio o un alveare, è un importante vantaggio perché dà alla regina la possibilità di espandere il più possibile la colonia con nuova prole che lavorerà per cercare cibo, conservarlo, estendere il nido e curarsi dei nuovi nati.
    Due individui di pesci pagliaccio (AP Photo/Sam McNeil)
    Ci sono poi individui di alcune specie che possono produrre sia cellule sessuali maschili sia femminili, di conseguenza possono riprodursi per conto proprio (ermafroditismo). In alcune specie questa capacità si presenta simultaneamente e prevede quindi la presenza contemporanea di organi (gonadi) maschili e femminili; in altre specie l’ermafroditismo è invece sequenziale, cioè l’individuo è per una fase della propria vita di un sesso e poi di un altro. Nel caso di particolari condizioni genetiche, ci possono essere casi di ermafrotidismo in moltissime specie, compresa la nostra.
    I cosiddetti pesci pagliaccio, resi famosi dal film Pixar Alla ricerca di Nemo, alla nascita sono tutti maschi, poi man mano che crescono e maturano diventano femmine. Fanno una vita particolare in gruppi molto gerarchici dove comandano solamente un maschio e una femmina, gli unici che si riproducono. Se muore la femmina dominante, il maschio dominante cambia sesso e diventa la nuova femmina dominante, mentre un nuovo maschio prende il suo posto.
    Tra gli animali ci sono anche quelli che fanno completamente a meno della genetica per la determinazione del sesso. In varie specie di tartarughe e alligatori, per esempio, il sesso non è ancora determinato al momento della posa delle uova e solo in un secondo momento avviene la differenziazione in base alla temperatura intorno al nido. Sopra una certa temperatura si ottiene un maschio, mentre al di sotto di quel limite una femmina. Un’ipotesi è che in questo modo nascano individui di sesso diverso in diversi periodi dell’anno, in modo da favorire la resistenza a particolari condizioni climatiche, ma non tutti sono convinti e la determinazione del sesso in base alla temperatura è tra le più studiate, anche per comprendere eventuali effetti sulle specie dovuti all’aumento della temperatura media globale come conseguenza del riscaldamento globale. LEGGI TUTTO

  • in

    Non ci sono più mufloni sull’isola del Giglio

    Caricamento playerIl 28 febbraio il tribunale amministrativo della Toscana (TAR) ha firmato un’ordinanza per sospendere le uccisioni dei mufloni sull’isola del Giglio da parte dei cacciatori, fino alla fine della stagione di caccia. La misura, che è stata decisa in seguito al ricorso di alcune organizzazioni animaliste, ha una durata molto limitata, dato che la stagione di caccia terminerà il 15 marzo. Probabilmente però sia il ricorso sia la sospensione non hanno avuto particolari effetti, perché sembra che già il 28 febbraio sull’isola del Giglio non ci fosse nessun muflone. Negli ultimi cinque anni infatti il Parco nazionale dell’Arcipelago toscano ha portato avanti un progetto di eradicazione della specie dall’isola e lo scorso dicembre ha dichiarato conclusa l’operazione.
    Capire come si è arrivati a questo provvedimento, apparentemente insensato, è importante perché da tempo si sta parlando di una possibile eradicazione dei mufloni anche sulla vicina isola d’Elba, che è molto più grande dell’isola del Giglio: uno studio sulla fattibilità del progetto è atteso per la fine di marzo.
    Molto in breve, i mufloni si potrebbero descrivere come pecore selvatiche. Il tema è ancora dibattuto nella comunità scientifica, ma è molto probabile che le pecore siano state ottenute attraverso la domesticazione, cioè con un processo di selezione artificiale, proprio dai mufloni, che in origine vivevano in Asia. I mufloni che oggi si trovano in Italia e in altri paesi europei invece discendono quasi sicuramente da pecore primitive, quindi non del tutto domesticate, che ancora in epoca antica sfuggirono ai loro allevatori e si rinselvatichirono.
    Tutti i mufloni che vivono in libertà in Europa arrivano dalla Sardegna: si ritiene che furono portati sull’isola dagli esseri umani in epoca neolitica, circa 6mila anni fa, e che lì siano sopravvissuti per secoli dopo essersi rinselvatichiti mentre i mufloni sul continente diventavano sempre più simili alle pecore di oggi. Dalla fine del Settecento, e per vari decenni, gruppi di mufloni sardi vennero portati in varie zone d’Italia e d’Europa, dove diedero origine a nuove popolazioni selvatiche. In tutti questi contesti i mufloni sono considerati una specie aliena (o “alloctona”), mentre nella sola Sardegna sono considerati “para-autoctoni” perché pur se introdotti dagli esseri umani fanno parte della fauna locale da vari millenni.
    Per questo quasi ovunque in Europa e in Italia i mufloni non sono una specie protetta e possono essere cacciati. Solo in Sardegna sono tutelati, anche perché nei decenni passati il loro numero era molto diminuito (si stima che oggi possano essercene circa 8mila nell’intera regione).
    Mufloni in una zona del porto di Arbatax nell’agosto del 2023 (ANSA)
    Nell’Arcipelago toscano, di cui l’isola del Giglio e l’isola d’Elba fanno parte, i mufloni vennero portati in epoca molto recente, negli anni Cinquanta. All’epoca le leggi sulla fauna erano molto permissive, sia per la caccia che per l’introduzione di animali alloctoni in nuovi territori. Il proprietario terriero e cacciatore Ugo Baldacci, che possedeva un’azienda faunistico-venatoria (cioè una riserva di caccia) in provincia di Pisa e dei terreni al Giglio, portò sette mufloni sull’isola, all’interno di un’area recintata. All’epoca si pensava che i mufloni sardi avrebbero potuto estinguersi, cosa che Baldacci voleva evitare, e le conoscenze sull’impatto dannoso delle specie alloctone non erano le stesse di oggi.
    Quattro dei mufloni portati da Baldacci provenivano direttamente dalla Sardegna, altri tre dalla Germania: discendevano da mufloni sardi portati in Ungheria nell’Ottocento. Gli animali si trovarono bene al Giglio e si riprodussero. Negli anni Ottanta, a causa dell’incuria della recinzione, si diffusero in tutta l’isola.
    Sono animali molto adattabili ed è possibile che nel loro periodo di massima prosperità sull’isola fossero tra 50 e 150. Il Giglio ha meno di 1.500 residenti e ha un’area di 24 chilometri quadrati, di cui una buona parte rientra nel Parco nazionale dell’Arcipelago toscano, dove fauna e flora sono protette.
    Diffondendosi nell’intero territorio dell’isola, i mufloni diventarono una delle specie che si potevano cacciare al Giglio, almeno nelle aree al di fuori del Parco nazionale dell’Arcipelago toscano. Dentro ai parchi nazionali infatti le uniche uccisioni di animali selvatici sono quelle compiute dagli enti che gestiscono i parchi stessi, allo scopo di preservare al meglio la biodiversità sulla base di conoscenze scientifiche condivise.
    Dal punto di vista della biodiversità, cioè della ricchezza di specie animali e vegetali, le piccole isole sono luoghi particolari. Da un lato sono molto più vulnerabili agli effetti negativi dell’invasione di una specie alloctona: avendo un territorio ridotto possono essere interamente colonizzate in tempi brevi, e quindi in tempi brevi una specie aliena può portare all’estinzione di una locale. Dall’altro però sono anche luoghi in cui è più facile eradicare una specie dannosa. Al Giglio sono (o erano) presenti varie specie alloctone, animali e vegetali: per questo nel 2019 è iniziato il progetto “LetsGo Giglio”, portato avanti dal Parco nazionale dell’Arcipelago toscano e finanziato dall’Unione Europea, con l’obiettivo di rimuoverle o ridurle in maniera consistente per preservare le specie locali.
    Per quanto riguarda i mufloni, la principale specie minacciata è il leccio (Quercus ilex), un albero tipico della regione del Mediterraneo, ma anche varie specie di arbusti: i mufloni mangiano queste piante quando sono molto giovani, impedendo che crescano. Gli effetti possono essere considerevoli.
    Uno studio realizzato nel 2019 dall’Università di Firenze sul territorio dell’Elba ha mostrato che nella parte occidentale dell’isola, dove i mufloni sono presenti, la vegetazione boschiva si rinnova molto più lentamente rispetto alla parte orientale dell’isola. Nel 2021 peraltro questi animali sono stati giudicati i più dannosi tra gli ungulati (cioè tra i mammiferi erbivori che hanno gli zoccoli) quando si diffondono in ambienti in cui sono alieni: è la conclusione di uno studio che ha preso in considerazione gli effetti a livello globale.
    Inizialmente il progetto “LetsGo Giglio” prevedeva che i mufloni fossero eradicati dall’isola in due modi: attraverso l’abbattimento o la cattura e la sterilizzazione. «Per arrivare a un’eradicazione la cosa migliore è utilizzare tecniche miste», spiega Giampiero Sammuri, zoologo e presidente del Parco nazionale dell’Arcipelago toscano: «Ci sono animali che è più facile catturare, proprio per via del loro comportamento individuale, e altri che è più facile abbattere. In tutte le operazioni di eradicazione di ungulati si privilegia la forma mista».

    Con i primi abbattimenti cominciarono anche le proteste delle organizzazioni che si occupano di difesa dei diritti degli animali. Il Parco allora si confrontò con le organizzazioni e nel novembre del 2021 fece un accordo con due di queste, il WWF e la LAV: si impegnò a sospendere gli abbattimenti e a proseguire con l’eradicazione aumentando le catture. Da parte loro le due organizzazioni promisero di occuparsi del mantenimento dei mufloni catturati e sterilizzati in strutture private sulla penisola, come il Centro di recupero per animali selvatici ed esotici di Semproniano, in provincia di Grosseto, che è gestito dall’associazione Irriducibili Liberazione Animale.
    Altri gruppi animalisti e il comitato di residenti del Giglio “Save Giglio”, che non avrebbe voluto né l’abbattimento dei mufloni né il loro trasferimento, continuarono comunque a protestare in vari modi, ottenendo anche un’interrogazione parlamentare nel marzo del 2023. Negli ultimi due anni ENPA, LNDC Animal Protection, VITADACANI e la Rete dei Santuari hanno comunicato in più occasioni la loro contrarietà all’eradicazione dei mufloni e portato avanti varie iniziative, tra cui il ricorso al TAR.
    Secondo quanto riferito dal Parco, qualcuno avrebbe inoltre compiuto «numerose azioni di disturbo» durante le pratiche di cattura dei mufloni: gli addetti a queste operazioni «sono stati pedinati e filmati mentre lavoravano e numerose sono state le azioni di sabotaggio, danneggiamento e, addirittura, di furto delle attrezzature utilizzate per le catture». Per questo il Parco aveva chiesto l’aiuto dei carabinieri per completare l’eradicazione e aveva vietato il passaggio su alcuni sentieri.
    A dicembre il Parco ha dichiarato conclusa l’eradicazione e ha fatto sapere che dopo l’accordo con WWF e LAV sono stati abbattuti 35 mufloni mentre altri 52 sono stati catturati e trasferiti. Per più di un anno dall’accordo non sono stati fatti abbattimenti.
    Più di recente è arrivata la decisione del TAR, che però non riguarda il progetto di eradicazione ma il piano della Regione Toscana che autorizzava le uccisioni dei mufloni sul territorio per la stagione di caccia 2023-2024, iniziata il primo ottobre. Il TAR ha sospeso per le ultime due settimane il permesso di cacciare mufloni sull’isola del Giglio, dunque di ucciderli al di fuori del territorio del Parco nazionale dell’Arcipelago toscano.
    «Penso che in realtà in questa stagione venatoria di caccia al muflone non ci sia andato nessun cacciatore a caccia di mufloni al Giglio», commenta Sammuri: «All’inizio di ottobre qualche muflone c’era ancora, perché gli ultimi li abbiamo prelevati tra ottobre e dicembre, ma erano pochissimi. Chi vuole andare a caccia di mufloni va dove ce ne sono molti».
    Ad esempio sull’isola d’Elba, dove secondo Sammuri sono stati cacciati circa 150 mufloni nella stagione che sta finendo. Nello stesso periodo all’interno del territorio del Parco nazionale dell’Arcipelago toscano, che si estende in parte anche sull’isola d’Elba, sono stati abbattuti circa 400 mufloni. «Quest’anno è stato un po’ un record, però almeno 300 all’anno nel Parco li abbiamo sempre abbattuti», dice ancora Sammuri, «e io non ho mai capito perché di 300 all’isola d’Elba non gliene importa niente a nessuno e invece queste poche decine dell’isola del Giglio hanno avuto questa grande attenzione».
    All’Elba sembra prevalere un’opinione pubblica favorevole alla possibilità di un’eradicazione della specie: ci sono ben due comitati locali che chiedono di eliminare mufloni e cinghiali dall’isola per via dei danni all’agricoltura e ai giardini e agli incidenti stradali causati da impatti con gli animali. I comuni dell’isola hanno finanziato uno studio di fattibilità per stimare costi e tempi necessari per l’eradicazione delle due specie. Servirebbero probabilmente molti più soldi di quelli con cui è stato finanziato “LetsGo Giglio” (1,6 milioni di euro) e in parte usati per i mufloni: l’isola d’Elba ha una superficie quasi dieci volte superiore a quella del Giglio, una popolazione venti volte superiore e centinaia di mufloni e cinghiali.
    In un incontro pubblico organizzato per discutere della possibile eradicazione delle due specie c’erano anche alcune persone contrarie, ma su fronti opposti: si dividevano tra animalisti e cacciatori che vorrebbero continuare ad andare a caccia sull’isola.
    Il TAR si esprimerà nuovamente sul ricorso che riguarda il Giglio a luglio. Per allora saranno stati fatti i controlli per verificare che davvero sull’isola non siano rimasti più mufloni, come previsto dai protocolli di “LetsGo Giglio”, e secondo Sammuri «mancherà il tema del contendere». Il presidente del Parco è certo che l’anno prossimo la Regione Toscana non farà un piano di caccia al muflone per l’isola, perché non ce ne sarà nessuno. LEGGI TUTTO

  • in

    Weekly Beasts

    È una settimana di cuccioli e cani, nella raccolta di foto degli animali che valeva la pena fotografare nei giorni scorsi. Nella prima categoria ci sono una tigre e un orso polare che si fanno vedere per la prima volta all’aperto nei rispettivi zoo, in Italia e nei Paesi Bassi, ma anche un giovane cammello in Germania. Nella seconda invece i cani che partecipano al Crufts Dog Show, un’importante mostra canina, e quelli che gareggiano all’Iditarod, la famosa ed estrema gara di slitte trainate da cani: occasioni che giustificano l’eccezionale numero di ben tre immagini della specie in una sola raccolta. In mezzo c’è spazio per una bufaga beccorosso sul collo di una giraffa, un pipistrello a ferro di cavallo, un coccodrillo e un rinoceronte indiano. LEGGI TUTTO

  • in

    Lo scorso febbraio è stato il più caldo mai registrato, secondo il programma dell’Unione Europea sull’osservazione della Terra

    Secondo il Climate Change Service di Copernicus, il programma di collaborazione scientifica dell’Unione Europea che si occupa di osservazione della Terra, lo scorso febbraio è stato il più caldo mai registrato sulla Terra. La temperatura media globale è stata di 13,54 °C, 0,12 °C più alta del precedente febbraio più caldo mai registrato, quello del 2016. Febbraio del 2024 è il nono mese consecutivo considerato il più caldo mai registrato a livello globale.Le stime di Copernicus sono realizzate usando diversi tipi di dati, tra cui le misurazioni dirette della temperatura fatte da reti di termometri presenti sulla terra e in mare e le stime dei satelliti. Carlo Buontempo, direttore del Climate Change Service di Copernicus, ha detto che la temperatura media del febbraio appena trascorso «non è davvero sorprendente, perché il continuo riscaldamento del sistema climatico porta inevitabilmente a nuovi estremi di temperatura». LEGGI TUTTO

  • in

    L’impazienza aumenta quando l’attesa è quasi finita

    L’impazienza è uno stato d’animo che può manifestarsi in circostanze molto varie e creare, in alcuni casi, anche qualche disagio. Può accrescere il nervosismo prima dell’inizio di una gara, per esempio, o rendere insopportabile l’attesa di un mezzo pubblico.Una ricerca condotta da una coppia di ricercatrici della University of Texas e della University of Chicago ha analizzato come l’esperienza dell’impazienza evolva nel tempo prima di determinati eventi, notando che il disagio aumenta man mano che la fine reale o presunta dell’attesa si avvicina, indipendentemente dalla durata dell’attesa.
    Pubblicata a dicembre sulla rivista Social Psychological and Personality Science, la ricerca ha utilizzato tre studi longitudinali (quelli che effettuano ripetute osservazioni dello stesso fenomeno in un lungo periodo di tempo) basati su sondaggi rivolti a diversi campioni di popolazione statunitense, che descrivono la variazione dei livelli di impazienza riferiti dalle persone intervistate. Uno fu condotto nei tre giorni prima di conoscere i risultati delle elezioni presidenziali americane del 2020. Un altro nei mesi trascorsi tra l’annuncio del successo della sperimentazione del primo vaccino per il Covid-19 e la comunicazione della disponibilità del vaccino per la popolazione. Un terzo studio misurò infine un’impazienza di tipo completamente diverso: quella provata da diversi gruppi di pendolari in attesa di salire su un autobus a una fermata.
    Ai partecipanti degli studi sulle elezioni e sul vaccino fu chiesto in più momenti durante l’attesa di valutare quanto si sentissero impazienti. I risultati mostrarono che mediamente l’impazienza aumentava a ridosso del momento in cui era prevista la fine dell’attesa: l’annuncio dei risultati dell’elezione e la comunicazione della data prevista per ricevere il vaccino.
    Il terzo studio suggerì che l’impazienza aveva più a che fare con un senso di frustrazione tipico di quella fase dell’attesa, la fine, che non con la quantità di tempo atteso nel complesso. Le persone più impazienti erano infatti quelle che aspettavano l’arrivo dell’autobus da un momento all’altro, non necessariamente quelle che attendevano da molto tempo. I risultati del terzo studio, secondo le ricercatrici, potrebbero spiegare perché l’impazienza per la fine della pandemia misurata nel secondo studio è rimasta costante nel tempo ed è aumentata soltanto dopo che le persone, una volta appresa la data della disponibilità del vaccino, hanno intravisto concretamente la fine dell’attesa.
    In generale l’impazienza è un fenomeno molto studiato nella psicologia del marketing, l’insieme di ricerche che si occupano dell’analisi dei comportamenti dei consumatori. Questa ricerca è stata condotta da Ayelet Fishbach, professoressa di scienze comportamentali e marketing alla Booth School of Business della University of Chicago, e Annabelle Roberts, professoressa di marketing alla McCombs School of Business della University of Texas a Austin. Secondo entrambe uno dei fattori che contribuiscono ad accrescere l’impazienza man mano che ci avviciniamo alla fine dell’attesa è il nostro desiderio di concludere un’attività: il desiderio «di cancellarla dalla lista di cose da fare», ha detto Roberts alla rivista Psyche.

    – Leggi anche: Perché impazziamo per le cose gratis

    I risultati della ricerca sono in parte coerenti con l’“effetto gradiente della meta”, una teoria nota del comportamentismo (lo studio scientifico degli aspetti direttamente osservabili e misurabili del comportamento) formulata nel 1932 dallo psicologo statunitense Clark Hull. In base a questa ipotesi le persone investono più risorse nel raggiungere i propri obiettivi, e cioè sono più motivate, quanto più sono vicine a una ricompensa o a un qualche tipo di traguardo, e la loro velocità tende ad aumentare man mano che l’obiettivo è vicino.
    In un’altra ricerca condotta con Alex Imas, anche lui professore di scienze comportamentali della University of Chicago, Fishbach e Roberts hanno analizzato come il desiderio della conclusione influenzi anche i processi decisionali, condizionando per esempio la scelta di completare un’attività subito anziché in seguito.
    In una serie di esperimenti hanno scoperto che, a parità di ricompensa economica, le persone preferivano lavorare un po’ di più (il 15 per cento in più) ma prima, anziché lavorare un po’ di meno ma più tardi. Erano anche tendenzialmente disposte a rinunciare a una parte minima di profitto economico pur di completare in tempi più rapidi un’attività la cui mancata conclusione sarebbe altrimenti rimasta nei loro pensieri. E preferivano fare un’ora di straordinario non retribuito pur di finire un lavoro prima delle ferie, anziché essere pagati per finirlo dopo.

    – Leggi anche: Quanto siamo prevedibili

    Da questo punto di vista, secondo Roberts, l’impazienza può essere descritta come la frustrazione che proviamo in una circostanza in cui saremmo tendenzialmente portati a investire più risorse nel raggiungere un traguardo, ma non possiamo farlo perché raggiungerlo non dipende dai nostri sforzi. È possibile di solito avere un’idea approssimativa del tempo che è necessario attendere prima che arrivi l’autobus che stiamo aspettando, o che si liberi un tavolo al ristorante, per esempio. Ma non c’è niente che possiamo fare in questi casi per raggiungere l’obiettivo più velocemente.
    La ricerca di Fishbach e Roberts fornisce indicazioni potenzialmente utili anche a chi nel marketing si occupa di gestione delle esperienze di attesa. In una serie di studi supplementari l’impazienza riferita dai partecipanti che immaginavano di ricevere un pacco entro un certo numero di giorni (6) era più alta nel giorno previsto per la ricezione del pacco che nei giorni precedenti. L’impazienza riferita tendeva inoltre a variare anche in relazione alla distanza fisica dall’oggetto atteso: era maggiore quanto più il pacco era vicino.
    Sulla base dei risultati della ricerca, secondo le ricercatrici, sovrastimare i tempi di attesa al momento dell’invio di un pacco può essere utile a ridurre l’impazienza della persona destinataria. Ma può essere utile anche in altre circostanze, come per esempio quando serve far sapere a una persona che dobbiamo incontrare quanto tempo manca all’incontro.
    Sapere che l’impazienza è massima nel momento in cui presumiamo che una certa attesa debba finire può essere di aiuto anche nella gestione delle esperienze in cui prevediamo che l’impazienza possa crearci un eventuale disagio. Negli ultimi minuti prima di un certo evento su cui non abbiamo alcun controllo – la partenza di un treno, per esempio – può essere una buona idea, secondo Roberts, distrarsi con un’attività che non c’entra niente con l’evento: ascoltare un podcast, per esempio, anziché controllare compulsivamente l’orologio in attesa dell’orario di partenza.

    – Leggi anche: Perché gli orologi segnano le 10:10 nelle pubblicità LEGGI TUTTO

  • in

    In Germania un uomo si è vaccinato 217 volte contro il coronavirus

    Caricamento playerIn Germania un uomo di 62 anni si è fatto vaccinare 217 volte contro il coronavirus che causa COVID-19, superando quindi abbondantemente la quantità di richiami consigliati per ridurre i rischi legati alle forme gravi della malattia. Secondo i medici che hanno analizzato il caso, l’uomo non ha avuto problemi di salute e conduce una vita normale.
    Kilian Schober, del dipartimento di Microbiologia dell’Università di Erlangen-Norimberga, ha detto a BBC News di avere appreso del caso particolare da alcuni articoli di giornale e di essersi incuriosito. Insieme ad alcuni colleghi, Schober si era quindi messo in contatto con l’uomo proponendogli di partecipare ad alcuni esami per verificare il suo stato di salute. L’uomo aveva accettato e si era sottoposto a prelievi di sangue e saliva, che erano stati poi confrontati con alcuni suoi vecchi campioni di sangue conservati congelati dopo accertamenti clinici svolti in precedenza.
    Come spiegano Schober e colleghi sulla rivista medica Lancet Infectious Diseases, l’uomo aveva acquistato privatamente tutte le 217 dosi del vaccino e se le era fatte somministrare nel corso di 29 mesi. Lo studio si occupa degli aspetti clinici, di conseguenza non spiega perché lo abbia fatto e si limita a citare motivi privati: anche i giornali che hanno riportato la notizia non danno informazioni maggiori sulle sue ragioni. Tra un prelievo e l’altro svolto dal gruppo di ricerca, l’uomo si era fatto nuovamente vaccinare e ciò aveva permesso di effettuare analisi ancora più accurate sul modo in cui reagisce il sistema immunitario dopo la somministrazione di un vaccino a mRNA, il tipo più utilizzato in Occidente in questi anni contro il coronavirus.
    Il gruppo di ricerca aveva ipotizzato che la grande quantità di vaccini avesse in qualche modo messo sotto maggiore stress il sistema immunitario rispetto al normale, ma dai test non sono emersi problemi di salute. Altri esami su specifici anticorpi non hanno fatto rilevare segni di eventuali infezioni da coronavirus avvenute in questi anni.
    Seppure questo caso offra nuovi elementi sulla sicurezza dei vaccini a mRNA, lo studio ricorda che da un singolo caso non si possono naturalmente derivare conclusioni molto ampie e che difficilmente si troveranno altri casi simili per fare maggiori confronti. Il gruppo di ricerca sconsiglia comunque di sottoporsi a una quantità maggiore di somministrazioni rispetto a quelle consigliate in questi anni dalle autorità sanitarie, che hanno previsto due dosi iniziali a distanza di qualche mese e una dose di richiamo, da effettuare periodicamente per rinnovare la memoria immunitaria. LEGGI TUTTO

  • in

    Iniziamo a capire qualcosa di più sul mercurio nei tonni

    Un’ampia ricerca da poco pubblicata sull’inquinamento da mercurio nei mari ha segnalato che in alcuni pesci – in particolare il tonno – la concentrazione di questo metallo è rimasta pressoché invariata dagli anni Settanta nonostante varie iniziative e un trattato per ridurre la sua dispersione nell’ambiente. La presenza del mercurio nel pesce può costituire un rischio nella fase di sviluppo del feto durante la gravidanza, ma può avere anche effetti sulla salute delle persone adulte. Secondo la ricerca, anche applicando più rigidamente i regolamenti internazionali potrebbero essere necessari decenni prima di rilevare una riduzione della concentrazione di mercurio nel tonno, tra i pesci più consumati al mondo.Mercurio e metilmercurioQuello che viene definito comunemente “mercurio nei mari” è in realtà il metilmercurio (o per meglio dire catione monometilmercurio), un composto che contiene un legame metallo-carbonio ed è quindi “metallorganico” (il carbonio è centrale nella produzione di composti organici e per la vita). Come suggerisce il nome, questa sostanza si forma a partire dal metallo attraverso l’attività di alcuni batteri anaerobi, cioè che vivono in assenza di ossigeno, e di altri microrganismi presenti soprattutto in laghi, fiumi, mari e sedimenti nelle zone umide. Più il mercurio è presente nell’ambiente, maggiore è la probabilità che una sua parte significativa venga trasformata in metilmercurio.
    Il mercurio si accumula nell’ambiente sia per fenomeni naturali, come l’attività dei vulcani e gli incendi stagionali nelle foreste, sia a causa dell’attività umana in particolare tramite la combustione dei combustibili fossili e in alcuni processi industriali, per esempio per la preparazione dell’acetaldeide, impiegata in alcuni fertilizzanti, nei solventi e in numerosi altri prodotti chimici.
    Fu proprio la produzione di acetaldeide a portare a una maggiore consapevolezza e sensibilizzazione sui rischi legati alle contaminazioni di mercurio, dopo il disastro ambientale scoperto a Minamata, una città nell’estremo occidente del Giappone. Tra gli anni Trenta e la fine degli anni Sessanta del secolo scorso un’industria chimica sversò nelle acque di scarico grandi quantità di metilmercurio che si accumulò in numerose specie marine, entrando poi nella catena alimentare e causando l’avvelenamento da mercurio di molte persone che abitavano nella zona. L’intossicazione fu tale da portare alla scoperta della cosiddetta “sindrome di Minamata”, una malattia che causa gravi problemi al sistema nervoso e che in alcuni casi può essere mortale.
    Il disastro di Minamata e alcuni altri casi simili portarono alla Convenzione di Minamata sul mercurio, un trattato internazionale adottato nel 2013 da circa 140 paesi per limitare le emissioni di mercurio e dei suoi composti nell’ambiente. La Convenzione è dedicata in particolare alla preservazione degli ambienti marini, dove soprattutto il metilmercurio tende a causare contaminazioni su larga scala all’interno della catena alimentare.
    Salute e alimentazioneIl metilmercurio ha un tempo di permanenza negli organismi relativamente lungo, di conseguenza attraversa buona parte della catena alimentare degli ambienti marini (“bioamplificazione”). Batteri e plancton contaminati diventano il cibo dei pesci più piccoli, che diventano quindi un pasto contaminato per i pesci più grandi e così via fino alle specie ittiche di maggiori dimensioni. Ciò determina un aumento della concentrazione di metilmercurio man mano che aumenta la stazza dei pesci, in particolare di quelli predatori. Molte specie ittiche vengono consumate da altri animali, come gli uccelli o gli esseri umani, che finiscono a loro volta con l’ingerire quella sostanza.
    Rappresentazione schematica della bioamplificazione del metilmercurio (Wikimedia)
    La concentrazione del metilmercurio nei pesci varia a seconda delle specie, della loro stazza, della loro età e naturalmente del luogo in cui sono cresciuti, che potrebbe essere più o meno contaminato. In una stessa specie, i pesci più anziani hanno in proporzione più metilmercurio di quelli più giovani, semplicemente perché sono stati esposti più a lungo a questa sostanza che impiega molto tempo per essere smaltita. Il metilmercurio ha infatti un’emivita intorno ai due mesi e mezzo nelle specie acquatiche: significa che la sua concentrazione si dimezza in quel periodo (dopo 2,5 mesi è metà, dopo altri 2,5 mesi è metà della metà e così via). I pesci in cui sono solitamente riscontrate le maggiori concentrazioni sono i pesci spada, gli squali e i tonni di grandi dimensioni e più anziani.
    Quando si mangia pesce contenente metilmercurio, questo viene assorbito dal sistema digerente e passa nella circolazione sanguigna, attraverso la quale si distribuisce in buona parte dell’organismo, compreso il sistema nervoso. La sua emivita nel sangue è di 50 giorni, ma è raro che con una normale alimentazione si raggiungano livelli da grave intossicazione, come avvenne per esempio a Minamata dove le concentrazioni erano molto alte.
    Le caratteristiche organiche del metilmercurio fanno sì che riesca a legarsi fortemente alle proteine, rendendo quindi più difficile la sua eliminazione da parte dell’organismo. Durante la gravidanza può avvenire il trasferimento al feto del metilmercurio assunto con l’alimentazione e sopra una certa soglia possono esserci rischi, legati per esempio a un minore sviluppo del sistema nervoso centrale; nelle persone adulte possono esserci maggiori rischi di sviluppare disturbi cardiovascolari.
    Stabilire limiti per il metilmercurio non è semplice e ancora oggi le soglie da stabilire sono piuttosto discusse tra gli esperti. L’Autorità europea per la sicurezza alimentare (EFSA) ha indicato una «dose tollerabile di assunzione» di 1,3 microgrammi per chilogrammo di massa corporea. È un indicazione che può apparire un poco criptica, considerato che nel momento in cui si consuma un piatto di pesce non si può sapere quale sia l’effettiva concentrazione (per il comparto alimentare ci sono comunque livelli massimi indicati nel regolamento dell’Unione Europea 2023/915). Per questo l’EFSA ha fornito indicazioni un poco più approssimative, ma utili nella vita di tutti i giorni.
    Il consiglio dell’EFSA, in linea con quelli di altre autorità ambientali e sanitarie in giro per il mondo, è di consumare pesce tra le due e le tre volte alla settimana, cercando di variare il più possibile i tipi di pesce e limitando il consumo di quelli di taglia medio-grande, che potrebbero avere un maggior contenuto di metilmercurio come pesci spada, naselli e tonni. Maggiori attenzioni dovrebbero essere mantenute per i bambini e dalle donne nel periodo della gravidanza, ma in generale l’EFSA invita comunque a mangiare pesce perché i suoi nutrienti sono comunque importanti nella fase della crescita e in età adulta. Come per molte altre cose che riguardano l’alimentazione, la questione di fondo è trovare un equilibrio tollerabile tra i rischi e i benefici portati dal consumo di un certo alimento.
    Emissioni e concentrazioneLe maggiori attenzioni portate dalla Convenzione di Minamata hanno contribuito negli ultimi decenni a ridurre la presenza di nuovo mercurio e nuovo metilmercurio negli ambienti marini, ma le analisi indicano che c’è comunque un certo accumulo che richiederà del tempo per essere smaltito. Lo studio, da poco pubblicato sulla rivista scientifica Environmental Science & Technology Letters, ha riguardato ricerche pubblicate nei decenni scorsi e nuovi dati che insieme hanno permesso di avere a disposizione analisi su quasi 3mila campioni di tonni, raccolti tra gli oceani Pacifico, Atlantico e Indiano negli ultimi 50 anni, con particolare attenzione ai tipi di tonno più pescati e consumati (tonno pinne gialle, tonno obeso e tonno skipjack).
    Dalle analisi è emerso che nonostante una riduzione nelle emissioni di mercurio a partire dagli anni Settanta, i livelli di metilmercurio nel tonno sono rimasti sostanzialmente invariati. Secondo la ricerca, la causa è probabilmente il modo in cui gli accumuli di metilmercurio si sono distribuiti nelle acque oceaniche. Il moto ondoso e la differenza di temperatura nell’acqua fa sì che in alcune circostanze questa sostanza raggiunga profondità meno basse, dove vivono i pesci che diventano poi prede dei tonni. Il processo non è però completamente chiaro, ma evidenzia una certa inerzia del sistema legata alle grandi quantità di mercurio accumulate nei secoli passati sia naturalmente sia in seguito alle emissioni derivanti dalle attività umane.
    Anche se i livelli di metilmercurio non sono diminuiti (nel caso del tonno skipjack c’è stato un lieve aumento, probabilmente dovuto alle maggiori emissioni di mercurio in Asia), c’è comunque una notizia incoraggiante: nessuno dei campioni analizzati ha fatto registrare concentrazioni superiori ai limiti per il consumo del tonno. Lo studio segnala comunque che le emissioni di mercurio dovranno essere ridotte molto di più per vedere una riduzione nella concentrazione di mercurio negli oceani nei prossimi 10-25 anni. A quel punto, per rilevare una riduzione nella concentrazione di metilmercurio nella carne del tonno e di altri pesci predatori potrebbero essere necessari diversi altri decenni. LEGGI TUTTO

  • in

    Una delle dune del Sahara ha più di 12mila anni

    Caricamento playerDue scienziati britannici hanno stimato per la prima volta l’età di una grande duna del deserto del Sahara, concludendo che abbia iniziato a formarsi più di 12mila anni fa. La duna si chiama Lala Lallia e si trova nell’est del Marocco, nella zona di Erg Chebbi, vicino al confine con l’Algeria. È alta cento metri e larga circa 700, e contiene più o meno 5,5 milioni di tonnellate di sabbia. Secondo i geologi Charles Bristow dell’Università Birkbeck e Geoff Duller dell’Università di Aberystwyth, la cui stima è stata pubblicata su Scientific Reports, capire la storia geologica di dune come questa può aiutare a comprendere meglio il clima che c’era migliaia di anni fa.
    Lala Lallia è una duna a stella, o duna piramidale: non tutte le dune hanno la stessa forma, questo tipo deve il suo nome al fatto di avere tre o più creste che partono dal punto più alto e si allungano in direzioni diverse. Si formano in luoghi in cui soffiano venti di direzioni diverse, a cui si deve appunto la loro forma peculiare, e sono il tipo di dune più alto. La più alta sulla Terra si trova nel deserto Badain Jaran, in Cina, e raggiunge 300 metri. Ce ne sono altre in molte zone desertiche in Africa, Arabia e Nord America, oltre che su altri corpi celesti del sistema solare, come Marte e Titano, una delle lune di Saturno.
    Sebbene le dune a stella siano tra le più grandi e spettacolari presenti sulla Terra, finora non ne era mai stata datata una. Facendolo è possibile ricostruire come sia avvenuta la loro formazione nel tempo. Sapere queste cose permette anche di riconoscere le tracce di antiche dune di forma simile negli strati di roccia che si studiano per capire la storia geologica del pianeta, dicono Bristow e Duller.
    Bristow e Duller hanno usato un georadar per capire la struttura interna di Lala Lallia, mentre per stimarne l’età hanno usato la datazione a luminescenza, una tecnica che permette di determinare l’ultima volta che delle rocce furono esposte alla luce solare. La datazione dipende dalla quantità di materiale radioattivo contenuto nelle rocce, che si accumula con il tempo trascorso sepolte. I geologi hanno prelevato dei campioni di sabbia da Lala Lallia durante le ore notturne e poi li hanno analizzati in un laboratorio illuminato con luce infrarossa. In queste condizioni i grani di sabbia diffondono l’energia accumulata sotto forma di luce e così gli scienziati possono calcolare da quanto tempo facessero parte della duna: maggiore è la luce, più antichi sono i grani di sabbia.
    La regione del Marocco in cui si trova la duna Lala Lailla, vicino alla città di Hassilabied (Joshua Stevens, NASA Earth Observatory)
    I campioni più antichi prelevati alla base della duna hanno un’età compresa tra 12.750 e 14mila anni. L’analisi della sabbia meno profonda ha fatto concludere agli scienziati che dopo la sua formazione iniziale la duna abbia smesso di crescere per circa ottomila anni, per poi aumentare molto di dimensioni negli ultimi millenni e in particolare negli ultimi mille anni: la maggior parte dei 100 metri di altezza attuali della duna si è accumulata negli ultimi 900 anni. Attualmente si sposta a una velocità di 50 centimetri all’anno verso ovest.
    Bristow e Duller hanno fatto varie ipotesi sulle ragioni per cui per circa ottomila anni la duna non è cresciuta: potrebbe avere a che fare con la storia dei venti nella regione in cui si trova, a sua volta legata a più ampi fenomeni climatici dipendenti dall’oceano Atlantico. LEGGI TUTTO