More stories

  • in

    Il nuovo capo della NASA è più ricco, più giovane e cammina nello Spazio

    Caricamento playerMentre lo scorso settembre osservava la Terra dal punto più distante mai raggiunto da un essere umano dai tempi delle missioni lunari Apollo, Jared Isaacman disse che «laggiù abbiamo molto lavoro da fare. Ma da quassù, la Terra sembra davvero un mondo perfetto». Ora che Isaacman è tornato sul nostro pianeta, le cose da fare certamente non gli mancheranno. Nel tardo pomeriggio di mercoledì, infatti, il presidente eletto Donald Trump lo ha scelto come prossimo amministratore della NASA, raccogliendo insolitamente un assenso trasversale tra Repubblicani e Democratici.
    Se come probabile la sua nomina sarà confermata dal Senato degli Stati Uniti, Isaacman diventerà il più giovane e il più ricco capo della NASA nell’intera storia dell’agenzia spaziale statunitense. Succederà a Bill Nelson, ex astronauta e politico di lungo corso nominato per quell’incarico nel 2021 dal presidente ora uscente Joe Biden. Nelson ha 82 anni, il doppio di Isaacman, e ha un patrimonio non comparabile con quello del suo successore, che è stimato intorno agli 1,7 miliardi di dollari.
    Nelson e Isaacman hanno comunque qualcosa in comune: entrambi hanno partecipato a missioni spaziali. Nelson sullo Space Shuttle nel 1986, Isaacman – che all’epoca stava per compiere tre anni – ha invece partecipato a due missioni, entrambe gestite interamente da privati e senza un diretto coinvolgimento della NASA. Nel farlo ha stretto rapporti con Elon Musk, il capo di SpaceX, che ha fortemente sostenuto la candidatura di Trump e sarà coinvolto nella sua prossima amministrazione.
    La vicinanza di Isaacman a Musk ha con molta probabilità influito sulla scelta di Trump e pone non pochi problemi di conflitto d’interessi, ma la nomina è stata comunque accolta positivamente dalla maggior parte dei commentatori e da chi ha gestito in passato la NASA. Isaacman nel corso della campagna elettorale non si era del resto esposto particolarmente, mostrando di essere interessato alle esplorazioni spaziali e a nient’altro.
    Elon Musk e Donald Trump durante il lancio sperimentale di Starship a Boca Chica, Texas, il 19 novembre 2024 (Brandon Bell/Pool via AP)
    Isaacman deve buona parte della propria ricchezza a un’intuizione che ebbe nel 1999, quando aveva 16 anni. Appassionato di informatica, mise insieme un sistema per la gestione dei pagamenti online, che in pochi anni divenne tra i più utilizzati negli Stati Uniti con centinaia di milioni di dollari di ricavi ogni anno. La società, che oggi si chiama Shift4 Payments, è ancora attiva e ha sempre Isaacman come amministratore delegato. Con parte dei ricavi della sua azienda, nel 2012 Isaacman partecipò alla fondazione di Draken International, una società che si occupa di fornire corsi di formazione per i piloti dell’aeronautica militare.
    Lo stesso Isaacman è pilota, attività che da più giovane pensava lo avrebbe avvicinato alla possibilità, un giorno, di fare l’astronauta. E quel giorno arrivò nel 2021 con la missione spaziale privata Inspiration4, finanziata in buona parte con i suoi soldi e gestita da SpaceX. A settembre di quest’anno, Isaacman era tornato nello Spazio effettuando la prima “passeggiata spaziale” (attività extraveicolare) interamente gestita dai privati, sempre in collaborazione con SpaceX.
    Isaacman è un forte sostenitore dei processi che stanno portando alla privatizzazione del settore spaziale. In tempi recenti ha criticato le scelte della NASA per il programma lunare Artemis, soprattutto per quanto riguarda il costoso sistema di trasporto per gli astronauti verso la Luna (il grande razzo SLS e la capsula Orion) e la decisione di avere due sistemi alternativi per compiere l’allunaggio, con un aumento dei contratti e dei costi. SpaceX ha ricevuto l’incarico di svilupparlo adattando la sua enorme astronave Starship, con un contratto da 4 miliardi di dollari, e anche Blue Origin di Jeff Bezos (il fondatore di Amazon) ha un contratto da 3,4 miliardi di dollari per fare altrettanto.
    Jared Isaacman durante la sua attività extraveicolare, il 12 settembre 2024 (SpaceX)
    Da amministratore della NASA, Isaacman dovrà decidere come riorganizzare Artemis, ormai in ritardo e con la possibilità che gli Stati Uniti vengano battuti sul tempo dalla Cina per il ritorno sulla Luna con esseri umani. Nel farlo dovrà amministrare un bilancio di circa 25 miliardi di dollari, che tiene insieme tantissime cose: dall’esplorazione con sonde del Sistema solare ai satelliti intorno alla Terra per le osservazioni scientifiche, passando per gli ancora poco chiari piani per raggiungere Marte con gli astronauti, la principale fissazione di Elon Musk.
    Senza SpaceX ed Elon Musk, Isaacman difficilmente avrebbe raggiunto lo Spazio, ma gli stretti rapporti con l’azienda e i potenziali conflitti d’interessi non sembrano essere al momento una grande preoccupazione. Lori Garver, ex viceamministratrice della NASA durante la presidenza di Barack Obama, ha definito «una notizia fantastica» la nomina, mentre l’ex amministratore della NASA Jim Bridenstine (scelto per quel ruolo da Trump durante il suo primo mandato) ha invitato il Senato ad approvare velocemente la scelta perché Isaacman è «la persona giusta per guidare la NASA in una nuova ambiziosa era di scoperte ed esplorazioni».
    Isaacman aveva in programma di effettuare altri viaggi nello Spazio, ma dovrà probabilmente rivedere i propri piani. Ripensare quelli della NASA sarà comunque più complicato, soprattutto nel caso di tagli di alcuni progetti che potrebbero influire sul grande indotto del settore spaziale negli Stati Uniti che impiega centinaia di migliaia di persone. Anche per questo l’amministratore uscente Bill Nelson aveva mantenuto un approccio cauto, che però secondo i più critici aveva portato a un certo immobilismo per non assumersi troppi rischi.
    Isaacman ha un modo un po’ diverso di valutare il rischio, come ha dimostrato lo scorso settembre uscendo da una capsula in orbita con una tuta spaziale mai sperimentata prima. La ricerca di altri primati sarà il suo principale obiettivo da amministratore della NASA, almeno nelle sue intenzioni: «Ispireremo i bambini, i vostri e i miei, a guardare in alto e a sognare che cosa si possa fare. Gli statunitensi cammineranno sulla Luna e su Marte e, nel farlo, miglioreremo la vita qui sulla Terra». LEGGI TUTTO

  • in

    Come distruggere la cosa più grande che abbiamo mai portato nello Spazio

    Caricamento playerNegli ultimi 26 anni l’umanità ha affrontato difficoltà tecnologiche, logistiche e di relazioni internazionali per costruire e mantenere l’oggetto più grande che abbia mai messo intorno alla Terra. Ma il tempo passa per tutti, anche in orbita, e da testimonianza dell’ingegno umano e simbolo della collaborazione tra più paesi la Stazione Spaziale Internazionale (ISS) diventerà presto un enorme rifiuto da smaltire.
    Quando non sarà più abitata dagli astronauti, intorno al 2030, non potrà continuare a girare per sempre sopra le nostre teste e dovrà essere distrutta. Un piano per farlo c’è, ma i pochi anni che separano la Stazione dalla sua fine saranno cruciali per capire che cosa ci sarà, e se ci sarà qualcosa, al posto del più grande laboratorio orbitale della storia.
    La NASA ha in programma di distruggerlo poco dopo il 2030, ma l’agenzia spaziale russa (Roscosmos) ha per ora garantito la propria collaborazione solo fino al 2028, senza offrire garanzie sui due anni che avanzano. Il peggioramento dei rapporti tra Stati Uniti e Russia in seguito alla guerra in Ucraina non ha avuto grandi ripercussioni nello Spazio, ma sta rallentando le trattative su una delle collaborazioni scientifiche più importanti tra i due paesi. Se la Russia abbandonasse la stazione già nel 2028, la NASA e le altre agenzie spaziali che partecipano al progetto (l’europea ESA, la giapponese JAXA e la canadese CSA) sarebbero in difficoltà nel mantenere da sole la Stazione.
    I rapporti tra gli stati hanno sempre avuto un ruolo centrale nella storia della ISS. Le attività di assemblaggio iniziarono nel novembre del 1998, con l’unione di un primo modulo russo a uno statunitense, che segnava l’avvio di una collaborazione impensabile fino a pochi decenni prima tra la Russia e gli Stati Uniti, i due protagonisti della cosiddetta “corsa allo Spazio”. Messi insieme, i due moduli raggiungevano una lunghezza di circa 17 metri, ma negli anni seguenti la Stazione avrebbe via via preso forma raggiungendo gli attuali 109 metri di lunghezza. Al suo interno sono stati effettuati migliaia di esperimenti sugli effetti dell’ambiente spaziale sugli organismi, compreso il nostro, e sulle opportunità di ricerca di nuovi materiali e tecnologie.
    Rappresentazione schematica dei principali elementi che costituiscono la Stazione Spaziale Internazionale (NASA)
    Come una sorta di grande LEGO, la ISS è formata da 18 moduli collegati tra loro e da una intelaiatura sulla quale sono montati altri componenti come i pannelli solari, i radiatori per dissipare il calore prodotto dalle strumentazioni, le batterie e altre attrezzature. Ha una massa che supera le 400 tonnellate, compresi i sette astronauti che solitamente vivono al suo interno, e viaggia intorno alla Terra a un’altitudine di circa 400 chilometri effettuando un giro completo del nostro pianeta ogni ora e mezza. In altre parole, con i suoi pannelli solari, è più o meno grande quanto un campo da calcio che impiega il tempo di una partita di calcio per compiere un’orbita.
    Come molti altri satelliti che girano intorno alla Terra, anche la ISS è soggetta al decadimento orbitale, cioè alla progressiva perdita di quota dovuta per lo più all’attrito atmosferico. A circa 400 chilometri di altitudine l’atmosfera terrestre è estremamente rarefatta, ma per quanto poche le molecole dei gas presenti si scontrano con la Stazione e la fanno rallentare quel tanto che basta per perdere quota. Quando la riduzione diventa significativa, si utilizzano i motori di alcuni moduli o delle capsule da trasporto collegate alla ISS per correggere l’orbita, in modo da compensare il decadimento. E questo è il principale motivo per cui la Stazione non potrà essere lasciata in orbita a tempo indefinito, quando sarà disabitata.
    In mancanza di una periodica spinta per rimettere le cose a posto, la ISS continuerebbe a cadere lentamente, fino a raggiungere gli strati più bassi e densi dell’atmosfera, dove si distruggerebbe. Con i satelliti di medie-piccole dimensioni si fa proprio questo, evitando in questo modo che rimanendo a lungo in orbita producano detriti che potrebbero danneggiare altri oggetti, ma la ISS è troppo grande e alcune sue parti potrebbero sopravvivere al rientro nell’atmosfera, schiantandosi al suolo. Nella migliore delle ipotesi nell’oceano, nella peggiore (per quanto remota) su una zona abitata.
    All’interno della ISS ogni oggetto deve essere assicurato alle superfici per evitare che galleggi via a causa dell’assenza di peso (NASA)
    Negli ultimi anni i tecnici della NASA hanno quindi studiato il modo migliore per determinare la fine della Stazione Spaziale Internazionale. Hanno per esempio valutato l’ipotesi di spingerla in un’orbita molto più alta dell’attuale, in modo da allontanarla da ciò che resta dell’atmosfera terrestre e rendere minimo il suo decadimento orbitale. Potrebbe rimanere in orbita per secoli senza la necessità di nuove spinte, ma spostarla in un’orbita più alta richiederebbe comunque molta energia e soprattutto esporrebbe la ISS a un maggior rischio di collisioni con altri oggetti rispetto a quello attuale, mitigato talvolta con manovre per evitare i detriti più pericolosi. Gli impatti potrebbero portare alla formazione di nuovi rifiuti spaziali, che potrebbero danneggiare altri satelliti e portare alla produzione di ulteriori detriti.
    Esclusa la possibilità di spostare la ISS in un’orbita più alta, la NASA ha anche esplorato la possibilità di smontare la Stazione e di riportarne i pezzi sulla Terra, in modo da conservarla in un museo per le generazioni future. Ma smantellare un oggetto così grande in orbita sarebbe un’impresa, considerato che per montarlo sono stati necessari decenni, con una trentina di viaggi degli Space Shuttle e oltre 160 attività extraveicolari (quelle che comunemente chiamiamo “passeggiate spaziali”). Gli Space Shuttle sono stati inoltre ritirati nel 2011 e a oggi non esistono altri sistemi per il recupero in orbita di oggetti ingombranti come i moduli della Stazione.
    Resta quindi un’unica soluzione: distruggere.
    Il governo degli Stati Uniti richiede che il rischio di danni alla popolazione causati dai frammenti di un veicolo spaziale, che viene distrutto nell’atmosfera, sia estremamente basso con una probabilità inferiore a un caso ogni 10mila rientri. Per la maggior parte dei satelliti il limite viene ampiamente rispettato, anche nel caso di un rientro non controllato, ma sarebbe impossibile fare altrettanto con un oggetto grande quanto la ISS, che dovrà essere quindi condotta verso un’area in cui distruggersi senza costituire un pericolo per qualsiasi zona abitata del pianeta.
    Il piano della NASA prevede di sfruttare in una prima fase il naturale decadimento orbitale, intervenendo poi con gli attuali sistemi di propulsione di cui dispone la ISS per farle perdere ulteriormente quota. La manovra di rientro vera e propria in uno specifico punto dell’atmosfera, per fare in modo che i detriti più grandi finiscano nell’oceano, non potrà però essere effettuata in autonomia dalla Stazione perché richiederà una grande quantità di propellente. Sarà utilizzato un veicolo spaziale che al momento ha due caratteristiche principali: quella di avere un nome particolarmente noioso, “US Deorbit Vehicle” (USDV), e di non esistere.
    Attività di manutenzione all’esterno di uno dei moduli della ISS (ESA)
    Lo scorso giugno, la NASA ha annunciato di avere scelto l’azienda spaziale privata SpaceX di Elon Musk per occuparsi della costruzione del veicolo che spingerà la Stazione Spaziale Internazionale verso la sua fine. Il valore stimato del contratto supera gli 800 milioni di dollari ed è solo una delle collaborazioni più recenti della NASA con SpaceX, che garantisce il trasporto degli astronauti sulla ISS con la sua capsula Crew Dragon e ha contratti per gestire il ritorno sulla Luna con Starship, l’enorme astronave in fase di sviluppo in Texas.
    SpaceX utilizzerà una versione modificata del proprio sistema di trasporto Dragon per realizzare l’USDV, con più motori e una maggiore capacità di carico del propellente. In questo modo il veicolo potrà attraccare alla ISS utilizzando i meccanismi già normalmente impiegati per i viaggi di rifornimento e per gli astronauti, sfruttando procedure ormai rodate. L’USDV avrà il compito di far rallentare la Stazione rendendo sempre più stretta la sua orbita, fino a quando raggiungerà il punto di inserimento, cioè la quota in cui non potrà più cambiare traiettoria per sfuggire alla Terra. Incontrando gli strati sempre più densi dell’atmosfera, raggiungerà temperature di migliaia di °C e inizierà a distruggersi.
    Le prime strutture a cedere saranno i pannelli solari e i radiatori, che si staccheranno dall’intelaiatura rompendosi in frammenti via via più piccoli, la maggior parte dei quali brucerà ad alta quota. Le forti sollecitazioni causeranno poi la rottura dell’intelaiatura e la separazione dei moduli, che si distruggeranno non essendo stati progettati per resistere a un rientro nell’atmosfera. Il loro rivestimento esterno fonderà privando le strumentazioni all’interno (computer, circuiti per l’aria e l’acqua, alloggiamenti degli astronauti, ecc) della loro protezione. Le alte temperature fonderanno e bruceranno buona parte della Stazione, ma qualcosa delle parti più dense e massicce sopravviverà e tornerà sulla Terra.
    I pannelli solari della ISS saranno tra le prime strutture a cedere (ISS)
    Il rientro controllato permetterà di far cadere ciò che rimane della ISS nel cosiddetto “punto Nemo”, cioè l’area oceanica più lontana dalle terre emerse. Si trova nella parte meridionale dell’oceano Pacifico e deve il proprio nome ai romanzi di avventura L’isola misteriosa e Ventimila leghe sotto i mari di Jules Verne. È un punto scelto spesso per il rientro dei veicoli spaziali e per questo viene chiamato informalmente “cimitero delle astronavi”. Non è previsto alcun recupero, ma le dimensioni e la cottura nel turbolento rientro nell’atmosfera rendono l’impatto ambientale dei detriti spaziali trascurabile, rispetto alla vastità dell’oceano.
    Prima di elaborare il proprio piano, la NASA si era rivolta alle aziende del settore spaziale per chiedere se fossero interessate a riutilizzare parte della Stazione, senza ricevere proposte credibili o facilmente realizzabili. Le parti più vecchie dell’infrastruttura e delle strumentazioni risalgono del resto a più di 20 anni fa e nel frattempo ci sono stati importanti progressi nello sviluppo dei moduli, come dimostrato dai primi modelli sperimentali realizzati dai privati. Da qualche tempo alla ISS possono infatti essere collegati nuovi moduli, che un giorno dovrebbero costituire basi orbitali interamente gestite dai privati.
    Axiom Space è una delle aziende spaziali che collegheranno propri moduli alla ISS in vista della creazione di una propria base orbitale privata (Axiom Space)
    Almeno nei piani attuali, non ci sarà infatti una nuova ISS che sostituirà quella attuale. I governi non sono interessati a spendere altri miliardi di euro per costruirne una nuova e ritengono di poter investire il denaro che risparmieranno nella manutenzione altrove, per esempio nei progetti spaziali legati all’esplorazione della Luna e forse un giorno di Marte. Non è però ancora chiaro se e con che tempi saranno costruite basi orbitali private, né se nasceranno nuove collaborazioni come quelle ventilate negli ultimi anni tra la Russia e la Cina, che ha già una propria base in orbita.
    Tra tante incertezze e cambiamenti, la fine della Stazione Spaziale Internazionale è ormai data per certa: non è una questione di se, ma di quando. Un giorno, dopo aver accompagnato per decenni la Terra girandole intorno quasi duecentomila volte, si avvicinerà sempre di più al nostro pianeta trasformandosi nella più grande meteora mai costruita dall’umanità. LEGGI TUTTO

  • in

    Il messaggio di Arecibo ha 50 anni

    Caricamento playerIl 16 novembre di cinquant’anni fa la grande antenna del radiotelescopio di Arecibo, sull’isola di Porto Rico, trasmise uno dei messaggi radio più famosi della storia per provare a comunicare con gli alieni. La comunicazione fu inviata verso l’ammasso globulare di Ercole (M13) a 25mila anni luce di distanza da noi, per dimostrare sia le capacità del radiotelescopio sia quella della nostra specie di mettersi in contatto con qualcuno nell’Universo in grado di ascoltare.
    Il contenuto del messaggio era stato deciso dall’astrofisico Frank Drake, noto per essere stato il fondatore del SETI (il programma scientifico dedicato alla ricerca di vita extraterrestre) insieme ad altre personalità, come lo scienziato e divulgatore scientifico Carl Sagan. La matematica era stata scelta come forma di linguaggio comune per provare a farsi capire da un’ipotetica specie aliena, che non avrebbe probabilmente utilizzato i nostri modi di comunicare: due più due fa del resto sempre quattro, in qualsiasi parte del Cosmo.
    Il messaggio di Arecibo è formato da 1.679 cifre binarie, cioè il frutto del prodotto di 23 e 73, due numeri primi. Drake, Sagan e gli altri scelsero quel numero di cifre perché pensarono che se una forma di vita intelligente avesse deciso di ordinarlo in un quadrilatero avrebbe potuto farlo solamente producendone uno di 23 colonne e 73 righe o di 23 righe e 73 colonne: in quest’ultimo caso non avrebbe ottenuto nulla di sensato, mentre nel primo si sarebbe accorta di poter dare un senso all’informazione.

    Decodificando il messaggio di Arecibo si ottiene infatti un’illustrazione molto semplice che schematicamente rappresenta ciò che siamo. Nella prima parte della griglia sono elencati i numeri da 1 a 10 in formato binario, seguiti dai numeri atomici degli elementi idrogeno, carbonio, azoto, ossigeno e fosforo. Seguono poi indicazioni sulle caratteristiche molecolari del DNA, una rappresentazione di un essere umano e, molto stilizzata, una rappresentazione grafica della popolazione della Terra. Infine sono mostrati il Sole con i suoi pianeti (compreso Plutone, ora non più considerato un pianeta vero e proprio) e la grande antenna dell’osservatorio di Arecibo che aveva reso possibile l’invio del messaggio.
    Il messaggio è ancora in viaggio e in 50 anni ha percorso una frazione minuscola della distanza di 25mila anni luce tra noi e M13. All’epoca fu scelto proprio quell’ammasso globulare perché comprende centinaia di migliaia di stelle, di conseguenza c’era una maggiore probabilità che ce ne fosse almeno una con un pianeta che orbitava alla giusta distanza da una stella per rendere possibile la vita (oggi sappiamo che ci sono migliaia di pianeti fuori dal nostro sistema solare, ma non abbiamo la certezza sulla possibilità che alcuni possano ospitare la vita, almeno per come la conosciamo). Anche nel caso in cui fosse effettivamente captato da qualcuno in grado di risponderci nei paraggi di M13, potremo ricevere un messaggio di risposta non prima di 50mila anni.
    M13 (Sid Leach/Adam Block/Mount Lemmon SkyCenter via Wikimedia)
    Drake, Sagan e gli altri erano naturalmente consapevoli di questi limiti e l’invio del messaggio in quell’autunno del 1974 fu per lo più simbolico, in occasione delle rinnovate capacità di trasmissione del radiotelescopio di Arecibo. Un paio di anni prima, Sagan aveva lavorato alla preparazione di una targa da applicare sulla sonda Pioneer 10 della NASA, che conteneva un’illustrazione schematica della nostra posizione nell’Universo e degli esseri umani. La stessa placca sarebbe stata inserita sulla seguente missione della Pioneer 11 e fu in un certo senso il prototipo di un progetto più articolato, il cosiddetto “Golden Record”, che fu montato nel 1977 sulle sonde Voyager 1 e 2, che ancora oggi stanno esplorando i confini del nostro sistema solare.
    Douglas Vakoch, presidente del METI International, un’organizzazione senza scopo di lucro impegnata nelle comunicazioni extraterrestri, ha ricordato l’anniversario del messaggio di Arecibo in un articolo di opinione sul New York Times, sostenendo l’importanza delle esperienze di questo tipo:
    Viviamo in tempi strani e precari, segnati di continuo da guerre, una crisi climatica globale e da sentimenti polarizzati sullo stato del mondo. In un momento storico come questo, con le preoccupazioni terrestri che ci lacerano, cosa succederebbe se guardassimo al cielo per trovare un motivo di speranza? Sapere che un’altra civiltà sta sopravvivendo alle proprie difficoltà potrebbe rassicurarci. E mentre speriamo di riuscire a scoprire e contattare altre forme di vita, anche concludere che siamo soli nell’Universo potrebbe essere una rivelazione importante per tenere unita la nostra specie.
    Vakoch sostiene che ci si dovrebbe concentrare nell’invio dei messaggi verso obiettivi più vicini come Proxima Centauri, che si trova a circa quattro anni luce dal nostro sistema solare. Ciò ridurrebbe gli eventuali tempi di comunicazione e inoltre permetterebbe di captare più facilmente un eventuale messaggio di risposta. Dal messaggio di Arecibo, comunque, sono stati inviati diversi altri messaggi interstellari verso corpi celesti relativamente più vicini, e uno potrebbe raggiungere il proprio obiettivo tra poco più di quattro anni.
    L’antenna del radiotelescopio presso l’osservatorio di Arecibo (© El Nuevo Dia de Puerto Rico via ZUMA Press / ANSA)
    Il messaggio inviato nel 1974 è intanto sopravvissuto a ciò che rese possibile la sua partenza dalla Terra. Il radiotelescopio di Arecibo è ormai inutilizzabile a causa di alcuni crolli catastrofici della sua gigantesca antenna larga 305 metri avvenuti nel 2020. La struttura è ormai inservibile e nel 2022 l’agenzia governativa statunitense NSF (National Science Foundation) ha deciso di non ricostruirla né di procedere alla costruzione di un osservatorio simile nella stessa zona.
    La struttura divenne famosa verso la fine degli anni Novanta grazie al film Contact di Robert Zemeckis con Jodie Foster. Era ispirato al romanzo dallo stesso titolo pubblicato nel 1985 da Sagan e raccontava il primo ipotetico contatto tra gli esseri umani e una specie aliena, affrontando soprattutto le implicazioni sul piano etico e religioso di questa scoperta. Per ora, appunto, solo in un romanzo. LEGGI TUTTO

  • in

    Alle presidenziali degli Stati Uniti si vota anche dallo Spazio

    Alle elezioni statunitensi di novembre potranno votare anche gli astronauti che si trovano nello Spazio. È possibile grazie al sistema di comunicazione che permette il trasferimento di documenti dallo Spazio alla Terra e a una legge del Texas del 1997. Negli anni passati anche astronauti sovietici, russi e francesi hanno votato per le elezioni nei rispettivi paesi.Al momento nello Spazio si trovano 14 persone: 3 sono astronauti cinesi, 4 sono russi e 7 statunitensi. Questi sette per votare hanno dovuto fare richiesta anticipatamente al governo statunitense di poter votare a distanza, secondo la stessa procedura seguita dai soldati inviati nelle missioni all’estero. Hanno poi ricevuto una password da un impiegato della contea in cui risiedono, per criptare il documento di testo con il voto e garantirne la segretezza. Dall’inizio del periodo del voto anticipato (che in Texas inizia lunedì 21 ottobre) possono quindi inviare un messaggio riservato contenente il loro voto all’ufficio elettorale locale, dopo una serie di passaggi.
    Quasi tutti gli astronauti statunitensi risiedono nello stato del Texas, dove si trova il Johnson Space Center, il principale centro di addestramento per andare in orbita della NASA, l’agenzia spaziale degli Stati Uniti. Per questo è spettato al Texas approvare una legge per permettere loro di votare anche durante le permanenze sulle stazioni spaziali, i laboratori scientifici che viaggiano nell’orbita terrestre.
    Nel 1996 la NASA cercò di fare in modo che l’astronauta John Blaha potesse votare nelle presidenziali di quell’anno (in cui alla fine il Democratico Bill Clinton venne riconfermato alla presidenza). Il tentativo fu fermato dal Segretario di stato del Texas, dato che lo stato non permetteva alcun tipo di voto elettronico: Blaha non poté votare.
    L’anno seguente il parlamento del Texas approvò una legge che permetteva il voto elettronico per chi avesse i requisiti per votare «ma si trovasse nello spazio durante il periodo del voto anticipato e nel giorno delle elezioni». Il primo astronauta statunitense a votare dall’orbita terrestre fu quindi David Wolf, che nel 1997 votò per il sindaco di Houston (una città del Texas) mentre si trovava a bordo della stazione spaziale russa MIR.
    Gli astronauti attualmente sulla Stazione Spaziale Internazionale: 7 di loro (quelli vestiti di nero e quello in primo piano a destra) sono statunitensi (NASA via AP)
    Prima di votare veramente gli astronauti ricevono una scheda elettorale finta, che reinviano a terra per controllare che il processo funzioni e mantenga la segretezza del voto. Ricevono poi la scheda vera, un documento di testo che compilano e rispediscono a terra tramite una rete di satelliti e antenne che permette alla NASA di comunicare con i satelliti nell’orbita terrestre, la Near Space Network (“Rete per lo Spazio vicino”).
    Tramite questa rete le informazioni vengono trasmesse al centro di ricerca di White Sands, in New Mexico. Da lì sono poi trasferite al centro di controllo delle missioni spaziali del Johnson Space Center, in Texas, che a sua volta le invia agli uffici elettorali della contea di Harris, in cui si trova il centro: qui il documento viene stampato e conteggiato assieme a tutte le altre schede della contea.
    Dal 2004, quando Leroy Chiao divenne il primo statunitense a votare per il presidente dallo Spazio, gli astronauti della NASA hanno votato in 3 delle 4 elezioni presidenziali seguenti (nel 2008, 2016, 2020): nel 2012 gli astronauti che si trovavano in orbita poterono votare anticipatamente secondo le procedure ordinarie. In almeno un caso, nel 2019, votò anche un astronauta statunitense che non risiedeva in Texas: Andrew Morgan votò nelle elezioni locali della Pennsylvania, grazie alla collaborazione fra le autorità locali e la NASA. L’ultima astronauta a votare dalla Stazione Spaziale Internazionale è stata Kathleen Rubins, che è anche l’unica ad aver votato due volte: nel 2016 e nel 2020. LEGGI TUTTO

  • in

    Le tute spaziali della NASA disegnate da Prada

    Caricamento playerMercoledì l’azienda aerospaziale statunitense Axiom Space ha presentato a Milano le tute spaziali per l’equipaggio della missione Artemis 3, la prima missione della NASA a prevedere l’allunaggio dopo l’Apollo 17, nel 1972. Le tute sono state disegnate e realizzate da Prada, uno dei marchi di moda di lusso italiani più famosi al mondo.
    La collaborazione tra Prada e Axiom Space è nata nel 2020 da un’iniziativa di Lorenzo Bertelli, responsabile del marketing di Prada e figlio dei direttori esecutivi Miuccia Prada e Patrizio Bertelli. Russell Ralston, vicepresidente esecutivo di Axiom Space, ha detto che lavorare con Prada è stato utile non solo per l’esperienza nelle tecniche di lavorazione e per la conoscenza dei materiali ma anche per la capacità di disegnare una bella tuta: «è un simbolo, un’icona della nostra società».
    (Ansa ZumaPress)
    Prada non è l’unica azienda di lusso che ultimamente si è interessata al mondo aerospaziale, anche in vista della crescita del cosiddetto “turismo spaziale”, con aziende come Blue Origin, fondata dall’ex CEO di Amazon Jeff Bezos, e Virgin Galactic del miliardario inglese Richard Branson, che offrono voli suborbitali, i cui veicoli superano gli strati più alti dell’atmosfera e poi tornano indietro senza fare un giro completo intorno alla Terra.
    La scorsa settimana il marchio di lusso francese Pierre Cardin ha presentato una tuta da allenamento per gli astronauti del centro dell’Agenzia spaziale europea a Colonia, in Germania; anche il gruppo alberghiero Hilton sta lavorando alla realizzazione delle tute per l’equipaggio dei voli commerciali della stazione spaziale Starlab.
    Le tute disegnate da Prada (Ansa ZumaPress)
    Rivolgersi al mondo della moda è un modo per le aziende di far interessare più persone ai voli aerospaziali. Di recente Axiom ha incaricato a Esther Marquis, costumista della serie tv a tema spazio For All Mankind, di disegnare la fodera delle tute spaziali xEMU indossate dagli astronauti per le loro attività extraveicolari (quelle che chiamiamo a volte “passeggiate spaziali”); Branson ha chiesto al marchio statunitense Under Armour di disegnare le uniformi di Virgin Galactic ed Elon Musk si è rivolto a Jose Fernandez, autore dei costumi dei film Batman vs Superman e della serie Avengers, per le uniformi della sua agenzia privata spaziale SpaceX.
    Uno dei look dell’ultima sfilata di Prada che richiamava il mondo dello spazio, come questa specie di casco, Milano, 19 settembre 2024 (Dall’account Instagram di Prada)
    Esteticamente, le tute disegnate da Prada non sono molto diverse dalle precedenti: sono bianche e voluminose e non avranno alcun logo dell’azienda. Sugli avambracci, in corrispondenza della vita e sugli zaini portatili ci saranno, però, delle linee rosse che ricordano il simbolo di Linea Rossa, il marchio sportivo di Prada. Le tute saranno uguali per uomini e donne, di taglia unica e personalizzate attorno al corpo di chi le indosserà per renderle più comode ed efficienti.
    Consentiranno agli astronauti di passeggiare ogni giorno otto ore sulla Luna e garantiranno una temperatura costante al loro interno anche quando fuori ci sono -150 °C o 120 °C.  Permetteranno di muoversi più facilmente rispetto alle tute precedenti, non hanno cerniere e le cuciture proteggeranno il più possibile dalle polveri lunari che, come raccontarono già Neil Armstrong e Buzz Aldrin, le prime persone a camminare sulla Luna nel 1969, tendevano a infilarsi nelle giunture e in altre parti delle tute.
    Artemis 3 non partirà prima del settembre 2026, durerà circa 30 giorni e coinvolgerà quattro astronauti: non sono stati ancora scelti ma saranno selezionati in modo da mandare anche la prima donna e la prima persona non bianca sulla Luna. LEGGI TUTTO

  • in

    Volete vedere una cometa?

    Caricamento playerDa qualche giorno è visibile anche in Italia una delle comete più luminose degli ultimi anni e attualmente in allontanamento dal Sole: C/2023 A3 Tsuchinshan-ATLAS (C/2023 A3). Non sarà facilissimo però, perché appare bassa all’orizzonte, quindi sono necessari un luogo adatto per osservarla a occhio nudo e un po’ di pazienza, e in generale perché le comete sono corpi celesti imprevedibili quindi la luminosità potrebbe variare sensibilmente.
    Come indica il “2023” contenuto nel suo nome, la scoperta della cometa è molto recente. Era stata rilevata una prima volta dall’Osservatorio della Montagna Purpurea in Cina all’inizio di gennaio, ma in mancanza di successive osservazioni era stata rimossa dagli elenchi dei nuovi corpi celesti da approfondire, perché si riteneva non fosse più osservabile. A febbraio il programma di ricerca astronomica ATLAS, che si occupa della rilevazione di asteroidi che potrebbero diventare pericolosi per la Terra, segnalò la scoperta di una nuova cometa che si scoprì poi essere la stessa che era stata osservata un mese prima in Cina.
    Le comete hanno di solito dimensioni relativamente piccole e sono formate quasi completamente da ghiaccio. La maggior parte degli astronomi ipotizza che siano residui rimasti dopo la condensazione della grande nebulosa da cui ha avuto origine il nostro sistema solare. Una nebulosa è un grande ammasso di polvere, idrogeno e plasma le cui dinamiche possono portare alla formazione di stelle e pianeti. Le zone periferiche della “nostra” nebulosa erano fredde a tal punto da permettere all’acqua di trovarsi allo stato solido, quindi ghiaccio, cosa che portò alla formazione delle comete.
    Ogni cometa segue una propria orbita intorno al Sole che la porta quindi ad avvicinarsi periodicamente alla stella: il grande calore fa sublimare gli strati più esterni di ghiaccio (la sublimazione è il passaggio dallo stato solido a quello gassoso senza passare per quello liquido). È in questa fase che intorno al nucleo delle comete si forma una “chioma” di vapori. Il vento solare e la pressione della radiazione del Sole spingono parte del vapore portando alla formazione della “coda”, che punta quindi in direzione opposta rispetto a quella in cui si trova il Sole. In molti casi il fenomeno rende visibile la cometa anche dalla Terra, talvolta a occhio nudo, con la luce solare che illumina la chioma. Una cometa appare come uno sbuffo luminoso in cielo e ha un moto apparente lento nella volta celeste, paragonabile a quello della Luna e di altri corpi celesti (non appare e scompare in pochi istanti come avviene con le meteore, per intenderci).
    (NASA)
    C/2023 A3 è al suo primo passaggio nel nostro sistema solare e per diverso tempo è stata soprattutto visibile dall’emisfero australe, quello opposto al nostro. Nelle ultime settimane ha iniziato a essere visibile nell’emisfero boreale, seppure con qualche difficoltà a causa della sua posizione bassa all’orizzonte e delle variazioni nella sua luminosità. Nei prossimi giorni la cometa apparirà via via più alta in cielo, ma al tempo stesso potrebbe ridursi la sua luminosità apparente perché si sta allontanando dal Sole e perché potrebbe ridursi la sua chioma.
    La posizione a ovest fa sì che la cometa si trovi nella porzione di cielo proprio nelle fasi del tramonto, cosa che può influire sulla sua visibilità. Il fatto che C/2023 A3 diventi osservabile più in alto nel cielo dovrebbe comunque ridurre il problema, perché rimarrà per più tempo visibile mentre il Sole sarà ormai tramontato. Le ore migliori per osservarla saranno quindi subito dopo il tramonto. Vista la direzione di osservazione è importante attendere che il Sole sia tramontato non solo per poter vedere meglio la cometa, ma anche per evitare di osservare direttamente e a lungo il disco solare con tutti i rischi che ne conseguono per la vista.
    Per osservare al meglio la cometa C/2023 A3 è importante scegliere un luogo buio, possibilmente lontano dall’inquinamento luminoso prodotto dalle città; se se ne ha la possibilità, è meglio raggiungere una collina o un luogo in alta quota, per avere una maggiore visione d’insieme della linea dell’orizzonte verso ovest. In queste condizioni la cometa dovrebbe essere visibile a occhio nudo, ma l’utilizzo di un binocolo o di un telescopio amatoriale potrebbe consentire di osservare meglio e più nel dettaglio la chioma e la coda della cometa.
    (Albino Carbognani / Sky Chart 4)
    Per localizzare il punto verso cui osservare può essere sufficiente una bussola o un’applicazione che ne simula la funzione (di solito ci sono funzionalità per queste cose già nei sistemi operativi degli smartphone Android e sugli iPhone), orientando verso i 255°, come indicato nella mappa celeste qui sopra che mostra il percorso della cometa nel cielo. Oltre alla bussola si possono utilizzare alcune applicazioni per cercare un oggetto celeste e ottenere informazioni su dove orientare lo sguardo per poterlo osservare. C/2023 A3 sarà osservabile fino alla fine di ottobre. LEGGI TUTTO

  • in

    Cosa succederebbe a un essere umano in un viaggio verso Marte?

    In diversi film di fantascienza ambientati su Marte, da Atto di forza del 1990 a The Martian del 2015, arriva sempre un momento in cui la tuta spaziale indossata da uno dei personaggi sul suolo marziano si rompe. In tutti i casi, indipendentemente dal livello di realismo degli effetti speciali, si capisce che non sarebbe un incidente di poco conto. Sebbene sia considerato per diversi aspetti il pianeta del sistema solare più simile alla Terra, Marte è infatti un ambiente estremamente ostile per gli esseri umani. E se è il più studiato in assoluto è perché negli anni è stato oggetto di diverse missioni robotiche: inviare un equipaggio umano sarebbe molto più complicato e costoso.I successi nei lanci sperimentali di Starship, l’astronave della società spaziale privata statunitense SpaceX, e le audaci affermazioni del suo capo Elon Musk hanno contribuito ad alimentare in anni recenti le aspettative e le fantasie di molte persone riguardo alla possibile colonizzazione futura di Marte. Ma senza arrivare a tanto, immaginare anche solo di spedire un equipaggio umano a decine di milioni di chilometri dalla Terra pone una quantità e un tipo di difficoltà che nessun’altra missione umana potrebbe porre.
    La distanza tra la Terra e Marte cambia molto durante le rispettive orbite dei due pianeti intorno al Sole: in media è 225 milioni di chilometri, ma quella minima è intorno a 56 milioni. Anche ragionando per assurdo, ammettendo cioè di trovare il modo di rendere il viaggio fattibile sul piano ingegneristico e aerospaziale, qualsiasi ipotesi realistica di viaggio da un pianeta all’altro e ritorno implicherebbe comunque una prolungata permanenza delle persone nello Spazio: oltre due anni, probabilmente. E i nostri corpi non sono fatti per lo Spazio, come dimostrano diversi studi sugli effetti della permanenza in ambienti a gravità quasi assente, come la Stazione Spaziale Internazionale (ISS), sulla salute degli equipaggi.
    Nel 2024 oltre cento istituti e gruppi di ricerca di diversi paesi del mondo hanno lavorato insieme alla pubblicazione dello Space Omics and Medical Atlas (SOMA), una raccolta di studi, dati e altri documenti di medicina e biologia sugli effetti del volo spaziale sugli equipaggi umani. I più conosciuti tra quelli determinati dalle diverse condizioni di gravità sono la perdita di massa muscolare e la riduzione della densità delle ossa (in media dall’1 all’1,5 per cento al mese).
    Sono problemi risolvibili in parte facendo esercizi fisici e assumendo integratori come i bifosfonati, utilizzati per contrastare l’osteoporosi.
    L’astronauta giapponese Koichi Wakata, ingegnere di volo della spedizione 38, si allena a bordo della Stazione Spaziale Internazionale, il 2 febbraio 2014 (NASA)
    Ma le condizioni poste dall’ambiente spaziale portano anche problemi alla vista, al sistema nervoso e a quello circolatorio, aumentando il rischio di trombosi. E sebbene non siano ancora stati oggetto di studi approfonditi, alcuni di questi problemi potrebbero persistere anche per anni dopo il ritorno sulla Terra.

    – Leggi anche: La palestra per andare sulla Luna

    Altri effetti studiati da tempo riguardano un fattore, se possibile, ancora più rilevante: l’impatto delle radiazioni spaziali. Sono radiazioni ad alta energia provenienti da fonti esterne al sistema solare, in genere esplosioni stellari come le supernove e altri fenomeni nello Spazio profondo. Sulla Terra il campo magnetico protegge la popolazione e in parte anche l’equipaggio dell’ISS impedendo alla maggior parte delle particelle che compongono le radiazioni spaziali, come anche delle particelle solari, di penetrare l’atmosfera. Ma nel caso di viaggi interplanetari la protezione per gli equipaggi deriverebbe soltanto dalla necessaria schermatura delle astronavi.
    Un equipaggio in viaggio verso Marte sarebbe verosimilmente esposto in modo continuo a una quantità di radiazioni paragonabile a quella di centinaia se non migliaia di radiografie del torace. I risultati di alcuni test di laboratorio suggeriscono che un’esposizione del genere potrebbe provocare diversi problemi al cervello, a cuore e arterie, alla vista, all’apparato digerente e ad altre parti del corpo. Per di più in un ipotetico viaggio verso Marte l’equipaggio avrebbe risorse mediche, diagnostiche e farmacologiche limitate, e nessuna possibilità di rifornimenti, a differenza degli equipaggi dell’ISS.

    – Leggi anche: Nello Spazio ti può girare il sangue al contrario

    Uno studio sui topi pubblicato a settembre sulla rivista Journal of Neurochemistry ha concluso che le radiazioni potrebbero influenzare anche le capacità cognitive a lungo termine. In un esperimento condotto nel Brookhaven National Laboratory a Upton, nello stato di New York, gli autori e le autrici dello studio hanno scoperto che l’esposizione a un fascio di radiazioni che simulava quelle spaziali comprometteva varie funzioni del sistema nervoso centrale dei topi. Rispetto al gruppo di controllo, i topi esposti al fascio mostravano problemi di memoria, di attenzione e di controllo motorio, che però diminuivano somministrando sostanze antiossidanti e antinfiammatorie.
    In un precedente studio sui topi, pubblicato a giugno sulla rivista Nature Communications, l’esposizione a una dose di radiazioni paragonabile a quella assorbita durante un eventuale viaggio di andata e ritorno verso Marte aveva provocato gravi danni ai reni. Le disfunzioni erano tali, in caso di assenza di protezione dalle radiazioni, da rendere realistica l’ipotesi di necessari trattamenti di dialisi per l’equipaggio durante il viaggio di ritorno.
    Da tempo la NASA sta sviluppando tecnologie, in collaborazione con altre aziende, che in un viaggio verso Marte fornirebbero agli astronauti e alle astronaute una parziale protezione dalle radiazioni spaziali. Tra ciò che viene utilizzato per costruire parti di veicoli e tute spaziali ci sono materiali sintetici come il kevlar e il polietilene, in grado di deflettere i fasci di particelle cariche fornendo una schermatura dalle radiazioni. Anche in questo caso, come per l’atrofia muscolare e per la riduzione ossea, alcuni effetti potrebbero inoltre essere mitigati assumendo particolari integratori, utilizzati anche sulla Terra sui pazienti oncologici durante la radioterapia.

    – Leggi anche: Portare sulla Terra dei pezzetti di Marte è più costoso del previsto

    Un altro possibile problema per un eventuale equipaggio in viaggio verso Marte, che condividerebbe per lungo tempo uno spazio presumibilmente limitato, sarebbe il rischio di problemi psicologici: disturbi dell’umore e del sonno, irritabilità, incapacità di pensare lucidamente. A rendere ancora più angosciante la percezione dell’isolamento potrebbe peraltro contribuire il ritardo delle comunicazioni con la Terra: fino a 20 minuti, a seconda della distanza. Il che significa anche che l’equipaggio potrebbe verosimilmente dover risolvere eventuali problemi urgenti in completa autonomia, senza l’aiuto del controllo missione.
    La NASA segnala infine i rischi di alterazioni del sistema immunitario delle astronaute e degli astronauti, e quindi di malattie, in un ambiente chiuso in cui dopo un certo tempo microbi e microrganismi potrebbero cambiare caratteristiche in modo imprevedibile. Ricapitolando, per differenziare i tipi di rischi per il corpo umano associati ai lunghi viaggi spaziali, la NASA utilizza l’acronimo “RIDGE”: Radiazioni spaziali, Isolamento e cattività, Distanza dalla Terra, Gravità e hostile/closed Environments, cioè “ambienti chiusi/ostili”.
    Poi ci sarebbe tutta la parte di problemi da risolvere una volta sul suolo marziano. Per sopravvivere servirebbe prima di tutto ossigeno, uno dei diversi gas presenti nell’atmosfera terrestre. Il 21 per cento circa dell’aria che respiriamo ogni giorno è infatti composta da ossigeno, mentre il resto è quasi tutto azoto (il rapporto, più o meno costante, è di circa 15 atomi di azoto per quattro atomi di ossigeno). Su Marte l’ossigeno è presente solo con una concentrazione dello 0,13 per cento.
    L’atmosfera marziana è molto più rarefatta: circa cento volte più di quella terrestre, cosa che rende il pianeta peraltro più vulnerabile agli impatti con oggetti come meteoriti e asteroidi. Alla base delle varie differenze c’è quella fondamentale della grandezza tra i due pianeti: Marte è più o meno la metà della Terra. Non ha quindi una gravità tale da trattenere tutti i gas atmosferici, e l’equipaggio di un’eventuale missione dovrebbe gestire tutte le numerose conseguenze di questa condizione.
    Un’immagine che mette a confronto la Terra e Marte, ottenuta unendo immagini acquisite dalle sonde Galileo e Mars Global Surveyor della NASA (NASA)
    Sfortunatamente il gas più abbondante nell’atmosfera estremamente rarefatta di Marte è un gas per noi mortale oltre una certa concentrazione: l’anidride carbonica, di cui è composto lo 0,04 per cento dell’aria sulla Terra e circa il 96 per cento dell’atmosfera marziana. In pratica, considerando che sulla Terra un’esposizione di circa 15 minuti a una concentrazione di anidride carbonica dell’1,5 per cento sarebbe già mortale, provare a respirare su Marte senza un rifornimento di ossigeno provocherebbe la morte per asfissia in brevissimo tempo.
    L’alta concentrazione di anidride carbonica non sarebbe nemmeno il primo dei problemi su Marte. Le pressioni al suolo marziano sono simili a quelle che sulla Terra troveremmo intorno a 30 chilometri di quota, come ricorda l’astrofisico Amedeo Balbi nel recente libro Il cosmo in brevi lezioni. In pratica, senza adeguate attrezzature, un essere umano morirebbe in pochi secondi per insufficiente pressione esterna, che provocherebbe un’espansione istantanea e letale di tessuti, gas e liquidi presenti nel corpo.
    Sorvolando sulla mancanza di ossigeno e di pressione sufficiente, ostacoli non insormontabili e già gestiti nello Spazio in altri ambienti diversi da Marte, ci sarebbe comunque da gestire il problema delle temperature: quella media su Marte si aggira intorno ai -60 °C, ma la minima può arrivare a -150 °C. L’acqua, che sarebbe necessaria per creare ossigeno, coltivare cibo, produrre carburante e altre materie prime, c’è ma si trova in luoghi del pianeta e in condizioni che la rendono non facilmente accessibile.

    Resterebbe infine lo stesso problema di tutto il viaggio: le radiazioni, dal momento che Marte non ha un campo magnetico abbastanza intenso da deviare le particelle atomiche e subatomiche provenienti dal Sole, da supernove lontane e da altre fonti. Un particolare spettrometro della grandezza di un tostapane, il Radiation Assessment Detector, fu il primo strumento a essere acceso dal rover Curiosity durante la sua missione su Marte nel 2012, e da allora fornisce informazioni sul livello di radiazioni presenti sul pianeta.
    Sul lungo periodo un campo base come quello in cui sopravvive il protagonista del film The Martian probabilmente non offrirebbe una protezione sufficiente contro le radiazioni, né contro le violente tempeste solari e di polvere. Un’alternativa teoricamente più sicura, secondo l’ex biomedico della NASA Jim Logan, potrebbe essere vivere in rifugi sotterranei o in strutture con pareti di circa 2,5 metri edificate utilizzando materie presenti in superficie.
    Le caverne sotterranee sono soltanto una delle varie ipotesi, più o meno fantascientifiche, formulate nel corso degli ultimi anni per provare a immaginare una soluzione all’incompatibilità dell’ambiente marziano con la vita umana. Ma, come scrive Balbi, «è importante che la percezione pubblica di questi temi sia basata sulla realtà, e non sulle illusioni». Una cosa è stabilire un avamposto, un’altra è fondare una colonia. E del resto «non abbiamo mai costruito civiltà fiorenti in Antartide, sul fondo dei mari o in cima all’Everest», tutti luoghi ostili ma infinitamente più accoglienti in confronto a Marte.
    Indipendentemente dall’obiettivo di raggiungere Marte, ragionare sul modo in cui sarebbe possibile sostenere a lungo la salute e la fisiologia umana nello Spazio ha comunque numerosi benefici per la vita sulla Terra, scrisse nel 2023 sul sito The Conversation Rachael Seidler, insegnante di fisiologia applicata alla University of Florida. Le sostanze che proteggono gli equipaggi dalle radiazioni spaziali e contrastano i loro effetti nocivi sul corpo umano, per esempio, possono anche servire per la cura dei pazienti oncologici sottoposti a radioterapia. Capire come contrastare gli effetti della microgravità su ossa e muscoli può inoltre migliorare anche le terapie e le cure mediche per varie condizioni di fragilità associate all’invecchiamento.

    – Leggi anche: Non siamo fatti per lo Spazio LEGGI TUTTO

  • in

    È iniziato il viaggio di Hera verso gli asteroidi

    Alle 16:52 di oggi (ora italiana) è partita da Cape Canaveral in Florida la missione Hera dell’Agenzia spaziale europea, per verificare le condizioni di Dimorphos, l’asteroide deviato dalla sonda DART della NASA nell’autunno del 2022. Il lancio è stato reso possibile da un razzo Falcon 9 dell’azienda spaziale privata SpaceX, partito nonostante le difficili condizioni meteorologiche a causa della stagione degli uragani. La sonda Hera viaggerà per circa due anni, raggiungendo il proprio obiettivo quando si troverà a circa 195 milioni di chilometri di distanza dalla Terra.La storia di Hera è strettamente legata a quella di DART (Double Asteroid Redirection Test), la missione organizzata negli scorsi anni dalla NASA per deviare un asteroide per noi del tutto innocuo e verificare la possibilità di evitare in futuro collisioni disastrose nel caso di corpi celesti sulla stessa traiettoria del nostro pianeta. Il test era stato effettuato facendo schiantare una sonda su Dimorphos, che ha una larghezza massima di 151 metri e orbita intorno a un asteroide più grande, Didymos, con un diametro massimo di 780 metri. L’impatto aveva effettivamente modificato il periodo orbitale di Dimorphos, cioè il tempo che il piccolo asteroide impiega per compiere un giro completo intorno a Didymos, a conferma dell’avvicinamento dei due asteroidi.
    La modifica era superiore alle aspettative ed era stata misurata da vari telescopi, ma per raccogliere maggiori informazioni sarebbe stata necessaria un’osservazione più da vicino, considerato quanto è remoto il sistema dei due asteroidi dalla Terra. Lo scopo di Hera è di compiere osservazioni e misurazioni nelle vicinanze dei due asteroidi, offrendo nuovi dettagli non solo sugli effetti dell’impatto di due anni fa, ma anche sulle caratteristiche di quei corpi celesti.
    (NASA)
    Raggiunti Dimorphos e Didymos nell’ottobre del 2026, Hera utilizzerà i propri strumenti per determinare forma, massa e il modo in cui si muovono mantenendosi a una distanza di circa 20-30 chilometri dalla loro superficie. In una seconda fase la distanza verrà ridotta a 8-10 chilometri in modo da poter misurare nel dettaglio le caratteristiche della superficie dei due asteroidi. Nella fase finale, la sonda sarà impiegata per passaggi ancora più ravvicinati per provare a rilevare il punto di impatto di DART e infine per tentare un atterraggio su Didymos. Quest’ultima parte della missione è sperimentale e potrebbe quindi mancare il proprio obiettivo: Didymos è del resto il più piccolo asteroide mai visitato da una sonda spaziale.
    Hera ha una massa di circa una tonnellata, ha una forma pressoché cubica (1,6 x 1,6 x 1,7 metri) ed è alimentata grazie ai suoi pannelli solari, che una volta aperti hanno un’area di 13 metri quadrati. Insieme alla sonda principale ci sono anche due “CubeSat”, piccoli satelliti grandi più o meno come una scatola da scarpe che effettueranno misurazioni aggiuntive e permetteranno di effettuare test su nuovi sistemi di comunicazione con la sonda.
    Hera e i CubeSat “Juventas” e “Milani” con gli asteroidi Dimorphos e Didymos, in un’elaborazione grafica (ESA)
    Il CubeSat “Juventas” è stato progettato per effettuare misurazioni sulle caratteristiche della gravità esercitata dagli asteroidi, mentre “Milani” è stato costruito per raccogliere dati sulla composizione superficiale degli asteroidi e per verificare la presenza di polveri nelle loro vicinanze, frutto dell’impatto di due anni fa con DART.
    Questo secondo CubeSat è stato sviluppato e realizzato in Italia, e in parte in Finlandia: si chiama Milani in ricordo di Andrea Milani Comparetti, astronomo e matematico che diede un fondamentale contributo nello studio delle comete e degli asteroidi, in particolare dei NEO, cioè dei corpi celesti a maggior rischio di avvicinarsi e scontrarsi con la Terra. Al termine della missione, Juventas e Milani tenteranno di posarsi su Dimorphos e di trasmettere i dati raccolti dai loro strumenti a Hera. Il sistema di comunicazione tra i due satelliti e la sonda sarà essenziale per svolgere queste attività.
    L’intera missione ha un costo intorno ai 350 milioni di euro e ha coinvolto i 18 stati membri dell’ESA e oltre 100 aziende europee, che hanno contribuito alla realizzazione dei componenti impiegati sulla sonda e sui due CubeSat. Per l’Italia tra le società coinvolte ci sono Avio, Leonardo, Tyvak International e TSD-Space.
    Intorno al Sole ci sono miliardi di asteroidi e loro frammenti. L’ipotesi più condivisa è che siano ciò che è rimasto del “disco protoplanetario”, l’esteso ammasso di polveri e gas in orbita intorno al Sole miliardi di anni fa dal quale si formarono i pianeti e i satelliti naturali del sistema solare che vediamo oggi. Quasi tutti gli asteroidi si trovano nella “fascia principale”, un grande anello di detriti che gira intorno al Sole, tra le orbite di Marte e di Giove a debita distanza da noi.
    L’asteroide Dimorphos visto dalla sonda DART 11 secondi prima dell’impatto (NASA/Johns Hopkins APL)
    Collisioni e altri eventi possono turbare le orbite di alcuni di questi asteroidi, portandoli ad avvicinarsi al nostro pianeta, e sono proprio questi a essere tenuti sotto controllo. I sistemi di rilevazione e tracciamento degli asteroidi più vicini hanno permesso nel tempo di catalogarne quasi diecimila con diametro di almeno 140 metri, che nel caso di un impatto potrebbero causare grandi devastazioni su scala regionale. Nessun asteroide conosciuto sembra costituire un pericolo diretto per la Terra per il prossimo secolo, ma è comunque importante non farsi trovare impreparati.
    Vari gruppi di ricerca hanno lavorato ad alcune soluzioni sperimentali per “deflettere” gli asteroidi, cioè per far cambiare loro orbita. La tecnica più esplorata e promettente, l’impattatore cinetico, consiste nell’urtare con una sonda l’asteroide quando è ancora molto lontano dalla Terra, in modo che il suo nuovo percorso non incroci più quello del nostro pianeta. DART ha dimostrato la fattibilità, per lo meno su piccola scala, di questa tecnica con un esperimento dal vero, più affidabile rispetto alle simulazioni al computer e Hera consentirà di comprendere meglio gli esiti di quell’impatto, avvenuto a milioni di chilometri da noi. LEGGI TUTTO