More stories

  • in

    Manca tantissimo per sfruttare la fusione nucleare

    Caricamento playerLa presidente del Consiglio Giorgia Meloni ha citato l’importanza della fusione nucleare per produrre energia elettrica nel corso del suo discorso alla 29esima conferenza delle Nazioni Unite per il contrasto al cambiamento climatico (COP29), prospettando un futuro che è però ancora molto lontano e secondo i più scettici addirittura impossibile da realizzare. Nel suo intervento Meloni ha detto che, oltre a mantenere i propri impegni nella riduzione delle emissioni di gas serra e nel sostenere i paesi in via di sviluppo, l’Italia è «in prima linea» nello sviluppo della fusione nucleare e che questa sarà essenziale per arricchire la varietà di risorse impiegate per produrre energia elettrica senza ricorrere ai combustibili fossili. In realtà, sarà ancora necessario tantissimo tempo per avere qualche risultato.
    Nonostante anni di lavoro, la ricerca nel settore è infatti ancora indietro e potrebbero essere necessari decenni prima di avere un impiego a livello commerciale delle tecnologie legate alla fusione. Per questo motivo molti esperti ritengono che indicare la fusione nucleare come la soluzione a buona parte dei problemi delle emissioni, che contribuiscono al riscaldamento globale, sia una distrazione e che ci si dovrebbe concentrare sulle tecnologie già disponibili per produrre quanta più energia elettrica possibile utilizzando fonti rinnovabili e – in una certa misura – le tecnologie nucleari di cui già disponiamo basate sulla fissione.
    Da più di mezzo secolo produciamo infatti energia elettrica dal nucleare attraverso la fissione, cioè una reazione in cui i nuclei di atomi pesanti (come gli isotopi plutonio 239 e uranio 235) vengono indotti a spezzarsi, con un processo che libera una grande quantità di energia termica. Questa viene sfruttata per trasformare acqua ad alta pressione in vapore, che fa poi girare turbine cui sono collegati alternatori per produrre energia elettrica. È un sistema che dopo gli importanti investimenti iniziali per costruire un reattore, dove la reazione di fissione viene tenuta sotto controllo, permette di produrre energia elettrica a costi contenuti e con un basso impatto ambientale rispetto alla produzione dai combustibili fossili.
    La fissione comporta però la produzione di residui altamente pericolosi, le “scorie radioattive”, che devono essere conservati con cura e isolati dall’ambiente circostante. Per questo da tempo si cercano alternative, provando a imitare la fonte più grande di energia nelle nostre vicinanze: il Sole.
    Mentre nella fissione i nuclei pesanti vengono spezzati in frammenti più piccoli, nella fusione si uniscono i nuclei leggeri (come quello dell’idrogeno) per ottenerne di più pesanti. Nel processo si formano nuovi nuclei la cui massa è minore rispetto alla somma delle masse di quelli di partenza: ciò che manca è emesso come energia, che può poi essere sfruttato. È un processo semplice da descrivere, ma estremamente difficile da riprodurre artificialmente sulla Terra in modo da ottenere più energia di quanta ne venga immessa nel sistema.
    I nuclei di deuterio e di trizio (due forme più pesanti di idrogeno) si uniscono formando un nucleo di elio; la reazione libera un neutrone ed energia (Zanichelli)
    I nuclei degli atomi tendono a respingersi a vicenda (repulsione elettrica) e sono quindi necessarie temperature nell’ordine di vari milioni di °C per farli unire. Negli anni si è ottenuto qualche risultato su piccola scala, ma nelle sperimentazioni si consuma quasi sempre più energia per gestire il processo rispetto a quella che si ottiene alla fine. Il bilancio energetico è quindi negativo e il sistema non è efficiente a sufficienza. I progressi annunciati negli ultimi anni spesso con grande enfasi sono quasi sempre legati al raggiungimento di una migliore efficienza, ma i risultati sono distanti da un sistema che possa essere impiegato su larga scala e con chiari vantaggi economici.
    L’ambito di ricerca è talmente vasto e articolato da avere portato negli anni all’avvio di alcune collaborazioni internazionali, con l’obiettivo di condividere le conoscenze e i risultati. Tra le più importanti c’è ITER, progetto che coinvolge più di 30 paesi per costruire un primo reattore sperimentale a Cadarache, nel sud della Francia. Al consorzio partecipano tra gli altri l’Unione Europea, gli Stati Uniti, l’India e il Giappone. ITER ha subìto numerosi ritardi, ha richiesto svariati miliardi di investimenti e si stima che una centrale dimostrativa basata sulle ricerche di ITER non sarà pronta prima del 2050, ammesso sia possibile realizzarne una.
    Il sito di ITER in fase di costruzione in Francia (Commissione europea)
    Negli ultimi anni la Cina ha investito grandi risorse nella ricerca sulla fusione. All’Istituto di fisica del plasma dell’Accademia delle scienze a Hefei gli esperimenti principali sono legati al “Tokamak superconduttore avanzato sperimentale” (EAST), una sorta di grande ciambella dove si provano a riprodurre le reazioni nucleari che avvengono nel Sole. In media vengono effettuati circa 100 test al giorno, contro i 20-30 realizzati quotidianamente nel principale centro di ricerca sulla fusione in Europa. I ritmi dei gruppi di ricerca cinesi sono serrati per recuperare il divario tecnologico e rendersi ancora più competitivi.
    I tokamak sono grandi macchine sperimentali a forma di ciambella (“toroidali”) nelle quali si producono il vuoto e un intenso campo magnetico necessari per isolare (o per meglio dire “confinare”) il plasma (un fluido estremamente caldo e carico elettricamente), in modo che non entri in contatto con le pareti della ciambella. Si ritiene che in questo modo si possano creare le condizioni per la fusione termonucleare in modo controllato, ma per farlo sono necessari un importante dispendio di energia e la regolazione della densità del plasma stesso, cioè della quantità di particelle presenti al suo interno.
    Il Tokamak di JET nell’Oxfordshire, nel Regno Unito (JET)
    Più il plasma è denso e più frequentemente le particelle possono scontrarsi e fondersi, liberando energia. Un plasma molto denso è però più difficile da confinare con il campo magnetico generato dal tokamak e si deve quindi trovare un equilibrio tra la densità e la qualità del confinamento. Solo in questo modo si ottiene una reazione di fusione attiva e sostenibile, producendo più energia di quella necessaria per mantenere il plasma confinato.
    Nella primavera di quest’anno, un gruppo di ricerca della National Fusion Facility di San Diego (California) ha annunciato di avere ottenuto per un paio di secondi un progresso significativo nella densità del plasma, pur mantenendo un buon confinamento grazie a una nuova configurazione del tokamak. Le conoscenze acquisite con l’esperimento potrebbero essere applicate al reattore di ITER, migliorando la sua capacità di produzione dell’energia elettrica, ma anche per questo saranno necessari anni di lavoro.
    Un approccio alternativo ai tokamak prevede invece l’impiego di potenti laser, che convogliano in contemporanea un impulso luminoso verso un minuscolo cilindro di metallo, che raggiunge in pochi istanti una temperatura intorno ai 3 milioni di °C. Il cilindro viene vaporizzato e si produce un’implosione che comprime una sfera di pochi millimetri di deuterio e trizio, due forme più pesanti di idrogeno. L’implosione fa sì che i due elementi fondano in elio, producendo la fusione vera e propria. Anche in questo caso, il problema rimane il bilancio energetico.
    Alla COP29 Meloni ha citato la fusione nucleare anche per ricordare il recente incontro del World Fusion Energy Group, un gruppo di lavoro organizzato dal ministero degli Esteri e dall’Agenzia internazionale per l’energia atomica (AIEA) che si è riunito per la prima volta a Roma lo scorso 6 novembre. Il gruppo ha lo scopo di promuovere la cooperazione internazionale tra governi, centri di ricerca e imprese per la condivisione di conoscenze sulla fusione e la definizione di standard condivisi. Il governo ha legato il suo avvio alle attività connesse alla transizione energetica, ma al momento appare improbabile che una tecnologia distante decenni da eventuali applicazioni commerciali possa avere un ruolo nel passaggio dal consumo dei combustibili fossili a fonti sostenibili per la produzione di energia elettrica.
    Fare previsioni sulla fusione nucleare è pressoché impossibile e secondo i più scettici non si riuscirà mai a ottenere sistemi efficienti per la produzione di energia elettrica. Al di là degli annunci politici, le aspettative rimangono comunque alte, con miliardi di euro investiti a livello mondiale per finanziare ricerca e sviluppo per una tecnologia che segnerebbe una trasformazione radicale nella produzione di energia elettrica, che diventerebbe enormemente più economica e accessibile. LEGGI TUTTO

  • in

    Il 2024 sarà l’anno più caldo mai registrato

    Caricamento playerAlla COP29 di Baku, in Azerbaijan, l’Organizzazione meteorologica mondiale (WMO) ha presentato un rapporto provvisorio sullo stato del clima nel 2024 che dice che quest’anno sarà il più caldo mai registrato in termini di temperature medie globali. Tra gennaio e settembre la temperatura media terrestre è stata maggiore di 1,54 °C rispetto ai livelli preindustriali, cioè rispetto al periodo compreso tra il 1850 e il 1900, con un margine di errore di poco più di un decimo di grado. A questo aumento della temperatura ha contribuito “El Niño”, quell’insieme di fenomeni atmosferici che si verifica periodicamente nell’oceano Pacifico e influenza il meteo di gran parte del pianeta, ma il suo effetto si è sommato a quello del riscaldamento causato dai gas serra prodotti dalle attività umane.
    Detto in altre parole, nei primi nove mesi dell’anno è stato superato il limite di 1,5 °C fissato come obiettivo più ambizioso dall’accordo sul clima di Parigi del 2015, il più importante trattato internazionale degli ultimi anni per contrastare il riscaldamento globale. Non significa però che l’accordo di Parigi sia fallito, ha sottolineato la segretaria generale della WMO Celeste Saulo: si potrà considerare sfumato solo se la temperatura media globale sarà superiore di 1,5 °C rispetto all’epoca preindustriale per almeno vent’anni. Se si considerano gli ultimi vent’anni le medie sono ancora al di sotto del limite.
    Il limite di 1,5 °C è più politico che scientifico, ma ha un forte valore simbolico: durante la COP21, la conferenza sul clima delle Nazioni Unite durante la quale l’accordo venne ultimato, fu scelto sotto le pressioni dei paesi più colpiti dalle conseguenze negative della crisi climatica e tuttora, nonostante sembri sempre più difficile riuscire a rispettarlo, la comunità internazionale sta cercando di non superarlo.
    L’anno scorso l’Organizzazione meteorologica mondiale aveva stimato come molto probabile che la temperatura media globale, calcolata su un anno intero, sarebbe stata superiore di più di 1,5 °C rispetto all’epoca preindustriale entro il 2027.
    Il rapporto della WMO dice anche che i dieci anni compresi tra il 2015 e il 2024 risulteranno il decennio più caldo mai registrato, e segnala che una serie di fenomeni legati al riscaldamento globale stanno accelerando: la perdita di ghiaccio dei ghiacciai, l’innalzamento del livello del mare e il riscaldamento degli oceani. Tra il 2014 e il 2023 il livello del mare medio globale è aumentato di 4,77 millimetri all’anno, più del doppio del tasso di aumento registrato tra il 1993 e il 2002. Per quanto riguarda i ghiacciai, il rapporto dice che nel 2023 hanno perso una massa di ghiaccio pari al quintuplo dell’acqua contenuta nel mar Morto, in Medio Oriente: dal 1953, cioè da quando si è cominciato a stimare la perdita di massa dei ghiacciai, non c’era mai stata una diminuzione di portata comparabile.
    Il precedente anno più caldo mai registrato era stato il 2023. LEGGI TUTTO

  • in

    Il confine tra Svizzera e Italia sarà spostato a causa della fusione dei ghiacciai alpini

    Caricamento playerA causa della fusione dei ghiacci nelle Alpi, il confine tra Svizzera e Italia sarà spostato di alcuni metri nell’area del Plateau Rosa, uno dei più ampi pianori perennemente ghiacciati a sud-est del Cervino. Alla fine della scorsa settimana il Consiglio federale svizzero ha approvato la firma della nuova convenzione sui confini, che entrerà in vigore non appena il governo italiano farà altrettanto. Negli ultimi anni la fusione dei ghiacciai, dovuta in primo luogo al riscaldamento globale causato anche dalle attività umane, ha modificato sensibilmente la geografia dell’arco alpino rendendo sempre più necessari aggiustamenti ai confini che riguardano l’Italia.
    Per praticità e per ridurre i contenziosi, spesso i confini sono definiti dalla linea spartiacque delle montagne, cioè da come fluisce l’acqua da una parte o dall’altra di un versante creando bacini idrografici diversi e separati. Lo spartiacque alpino determina buona parte del confine tra Italia, Francia, Svizzera e Austria, con alcune eccezioni dovute a scelte politiche ed eventi storici. Uno spartiacque può essere relativamente stabile e corrispondere a un crinale di roccia esposta, oppure può essere più dinamico se corrispondente al crinale di un ghiacciaio, di un nevaio o ancora di nevi perenni.
    In questo secondo caso, la fusione e il ritiro dei ghiacci a causa del cambiamento climatico possono determinare uno spostamento dello spartiacque, che col passare del tempo può diventare di decine o centinaia di metri. Proprio per questo negli anni passati Svizzera e Italia avevano iniziato a discutere sull’opportunità di rivedere parte dei loro confini, in modo da farli corrispondere al nuovo spartiacque o trovando soluzioni tali da tutelare gli «interessi economici delle due parti».
    Lungo il confine, e soprattutto in quella zona, ci sono numerosi impianti sciistici e rifugi, che a seconda dei casi sono entro il confine italiano, quello svizzero o sostanzialmente a metà. È per esempio il caso del rifugio Guide del Cervino: una sua parte è italiana, nel comune di Valtournenche, in provincia di Aosta, e la parte rimanente è a Zermatt, in Svizzera. Queste strutture riescono comunque a lavorare senza troppi problemi, grazie alla collaborazione tra Italia e Svizzera, ma una definizione più chiara dei confini può rendere più pratica la gestione di alcune attività e soprattutto la gestione degli imprevisti, che ad alta quota spesso corrispondono a necessità di dare soccorso a sciatori e alpinisti.
    Il confronto tra governo italiano e svizzero negli anni passati aveva portato a qualche attrito, che si era comunque risolto tra il 9 e l’11 maggio del 2023 quando il Comitato per la manutenzione del confine nazionale tra Svizzera e Italia aveva discusso la ridefinizione del confine nell’area del Plateau Rosa in corrispondenza della Gobba di Rollin, che lo delimita a sud, e della Testa Grigia che lo delimita invece a ovest. Il confronto aveva anche riguardato l’area del rifugio Jean-Antoine Carrel, che si trova nel comune di Valtournenche in Valle d’Aosta. La convenzione ha richiesto diverso tempo per essere ratificata da parte della Svizzera e si è ora in attesa che il governo italiano faccia altrettanto.

    Non ci sono ancora molti dettagli, ma in diversi punti il confine sarà spostato verso l’Italia di alcune decine di metri, portando quindi la Svizzera ad avere un po’ più di territorio. Il cambiamento non dovrebbe comunque avere particolari conseguenze per le strutture costruite negli anni, come funivie e teleferiche, in uno dei comprensori sciistici più grandi e articolati delle Alpi occidentali.
    Nel 2023 i ghiacciai svizzeri hanno perso circa il 4 per cento del loro volume rispetto all’anno precedente, la seconda perdita più grande mai registrata dall’Accademia delle scienze della Svizzera (il precedente record del 6 per cento era del 2022). In alcune zone dell’arco alpino i ricercatori svizzeri hanno interrotto le misurazioni perché non ci sono più quantità di ghiaccio significative da misurare. Si prevede che a causa dell’aumento della temperatura media globale le Alpi perdano una parte rilevante dei loro ghiacciai nei prossimi decenni, cosa che porterà a nuovi cambiamenti della geografia e probabilmente a nuovi spostamenti dei confini. Oltre che con l’Italia, la Svizzera è impegnata da tempo con la Francia per ridefinire le loro aree confinanti su parte delle Alpi. LEGGI TUTTO

  • in

    In Europa centrale alluvioni come quelle di settembre sono diventate più probabili

    Caricamento playerLe piogge intense che tra il 12 e il 15 settembre hanno causato esondazioni dei fiumi e grossi danni tra la Polonia e la Repubblica Ceca, in Austria e in Romania sono state eccezionali perché hanno interessato una regione molto vasta dell’Europa centrale. Un’analisi preliminare delle statistiche meteorologiche continentali indica che la probabilità che si verifichino fenomeni del genere è raddoppiata a causa del cambiamento climatico in atto.
    Lo studio è stato fatto dal World Weather Attribution (WWA), un gruppo di ricerca che riunisce scienziati esperti di clima che lavorano per diversi autorevoli enti di ricerca del mondo e che collaborano – a titolo gratuito – affinché ogni volta che si verifica un evento meteorologico estremo particolarmente disastroso la comunità scientifica possa dare una risposta veloce alla domanda “c’entra il cambiamento climatico?”. Nel caso delle recenti alluvioni in Europa centrale, che hanno causato la morte di 26 persone, ci sono larghi margini di incertezza ma il gruppo di ricerca ha concluso che un ruolo del cambiamento climatico ci sia.
    Il WWA, creato nel 2015 da Friederike Otto e Geert Jan van Oldenborgh, pratica quella branca della climatologia relativamente nuova che è stata chiamata “scienza dell’attribuzione”: indaga i rapporti tra il cambiamento climatico ed eventi meteorologici specifici, una cosa più complicata di quello che si potrebbe pensare. Per poter dare risposte in tempi brevi, gli studi del WWA sono pubblicati prima di essere sottoposti al processo di revisione da parte di altri scienziati competenti (peer review) che nella comunità scientifica garantisce il valore di una ricerca, ma che richiederebbe mesi o anni di attesa. Tuttavia i metodi usati dal WWA sono stati certificati come scientificamente affidabili proprio da processi di peer review e i più di 50 studi di attribuzione che ha realizzato finora sono poi stati sottoposti alla stessa verifica e pubblicati su riviste scientifiche senza grosse modifiche.

    – Leggi anche: Come mai Vienna non è finita sott’acqua

    Le alluvioni di metà settembre in Europa centrale sono state causate dalla tempesta Boris che poi ha provocato esondazioni anche in alcune zone della Romagna e dell’Emilia orientale. Le misurazioni della quantità di acqua piovuta in un giorno nel corso del fenomeno hanno fatto registrare dei record in varie località. Per verificare se fosse possibile ricondurre il fenomeno al cambiamento climatico causato dalle attività umane gli scienziati del WWA hanno confrontato le misure delle precipitazioni dei giorni in cui complessivamente è piovuto di più, quelli tra il 12 e il 15 settembre, con le statistiche sulle precipitazioni massime annuali su archi di quattro giorni.
    Hanno anche utilizzato le simulazioni climatiche, cioè programmi simili a quelli usati per le previsioni del tempo che mostrano quali eventi meteorologici potrebbero verificarsi in diversi scenari climatici futuri.
    Le conclusioni dello studio dicono che il cambiamento climatico non ha reso più probabili tempeste con caratteristiche generali analoghe a quelle di Boris (che sono piuttosto rare e di cui questa è stata la più intensa mai registrata), ma che in generale quattro giorni consecutivi piovosi come quelli che ci sono stati sono diventati più probabili in Europa centrale rispetto all’epoca preindustriale. Hanno anche stimato che la quantità di pioggia di tali eventi sia aumentata del 10 per cento, da allora. Secondo i modelli climatici basati su un ulteriore aumento delle temperature medie globali, di 2 °C rispetto all’epoca preindustriale invece che degli attuali 1,3 °C, in futuro sia la probabilità che l’intensità di questi eventi aumenterà ancora.
    Lo studio ricorda che comunque i danni delle alluvioni recenti sono dovuti anche allo scarso adattamento delle infrastrutture fluviali a eventi meteorologici estremi rispetto alle statistiche storiche. Tuttavia è stato anche osservato che rispetto a grandi alluvioni passate la situazione di emergenza probabilmente è stata gestita meglio: nel 2002 morirono 232 persone quando vaste aree dell’Austria, della Germania, della Repubblica Ceca, della Romania, della Slovacchia e dell’Ungheria furono interessate da un’alluvione, e nel 1997 ci furono almeno 100 morti per un’alluvione più ridotta in Germania, Polonia e Repubblica Ceca. Ancora nel luglio del 2021, la grande alluvione in Germania e Belgio causò la morte di più di 200 persone.
    In generale, la climatologia ha mostrato che il riscaldamento globale ha reso e renderà più frequenti le alluvioni, ma questo non vale per tutte le parti del mondo. In altre zone si prevede invece un aumento della frequenza di altri fenomeni meteorologici estremi, come le siccità. In certe parti del mondo inoltre è prevista una più alta frequenza di alluvioni in una specifica stagione dell’anno e meno precipitazioni nelle altre: l’Italia ad esempio ha un territorio morfologicamente complesso e diverso nelle sue parti, per cui le conseguenze del riscaldamento globale potrebbero essere diverse da regione a regione.

    – Leggi anche: Gli abitanti di Borgo Durbecco devono rifare tutto, di nuovo LEGGI TUTTO

  • in

    Perché è piovuto così tanto, sull’Europa e non solo

    Caricamento playerL’alluvione in Emilia-Romagna è solo uno degli effetti più recenti della tempesta Boris, che nell’ultima settimana ha causato grandi danni in vaste aree dell’Europa centrale, dalla Romania all’Austria, dove si stima siano morte circa 20 persone. Non è insolito che tra la fine dell’estate e l’inizio dell’autunno ci siano giornate piovose, ma l’intensità delle piogge e la presenza di altre forti perturbazioni nelle settimane scorse in altre aree dell’emisfero boreale (il nostro) sono un’ulteriore indicazione di come stia cambiando il clima, soprattutto a causa del riscaldamento globale. Oltre all’intensità, le tempeste sono sempre più frequenti e ci dovremo confrontare con i loro costosi effetti, in tutti i termini.
    Attribuire con certezza un singolo evento atmosferico al riscaldamento globale non è semplice, soprattutto per l’alto numero di variabili coinvolte. I gruppi di ricerca mettono a confronto ciò che è accaduto in un determinato periodo di tempo con cosa ci si sarebbe dovuti attendere (basandosi sulle simulazioni e sui modelli riferiti ai dati delle serie storiche) e a seconda delle differenze e di altri fattori indicano quanto sia probabile che un certo evento sia dipeso dal cambiamento climatico. Questi studi di attribuzione richiedono tempo per essere effettuati e non sono quindi ancora disponibili per Boris, ma le caratteristiche della tempesta rispetto a quanto osservato in passato e la presenza di altre grandi perturbazioni tra Stati Uniti, Africa e Asia stanno già fornendo qualche indizio.
    La tempesta Boris si è per esempio formata alla fine dell’estate più calda mai registrata sulla Terra, secondo i dati raccolti dal Climate Change Service di Copernicus, il programma di collaborazione scientifica dell’Unione Europea che si occupa dell’osservazione satellitare e dello studio del nostro pianeta. L’estate del 2024 è stata di 0,69 °C più calda rispetto alla media del periodo 1991-2020 e ha superato di 0,03 °C il record precedente, che era stato stabilito appena l’estate precedente (il 2023 è stato l’anno più caldo mai registrato).
    Le temperature estive particolarmente alte hanno contribuito a produrre una maggiore evaporazione in alcune grandi masse d’acqua come il mar Mediterraneo e il mar Nero, con la produzione di fronti di aria umida provenienti da sud che si sono mescolati con l’aria a una temperatura inferiore proveniente dal Nord Europa. L’incontro tra queste masse di aria con temperatura e umidità differenti hanno favorito la produzione dei sistemi nuvolosi che hanno poi portato le grandi piogge dell’ultima settimana nell’Europa centrale e negli ultimi giorni in parte del versante adriatico dell’Italia.
    Un allagamento provocato dall’esondazione del fiume Lamone a Bagnacavallo (Fabrizio Zani/ LaPresse)
    La piogge sono state persistenti e la perturbazione si è dissipata lentamente a causa della presenza di due aree di alta pressione – solitamente associata al bel tempo – che l’hanno circondata sia a est sia a ovest, rendendo più lenti i movimenti lungo i suoi margini. Non è un fenomeno di per sé insolito, ma in questo caso particolare ha interessato un’area geografica molto ampia per diversi giorni, portando forti piogge su fiumi e laghi e saturando il terreno, con la conseguente formazione di grandi alluvioni.
    Le analisi condotte finora hanno evidenziato condizioni nell’atmosfera che hanno interessato la corrente a getto che fluisce da est a ovest. Le correnti a getto possono essere considerate come dei grandi fiumi d’aria che attraversano l’atmosfera e, proprio come i corsi d’acqua, possono produrre anse e rientranze che determinano i cambiamenti nella direzione del vento e dei movimenti delle nuvole. Grandi zone di alta e bassa pressione hanno deviato sensibilmente la corrente a getto, riducendo la mobilità di alcune masse d’aria sopra l’Europa e altre aree del nostro emisfero.

    È possibile che tra i fattori che hanno determinato questa situazione ci siano ancora una volta le alte temperature dell’estate, che hanno portato gli oceani a scaldarsi più del solito. La temperatura media della superficie marina a livello globale è stata di quasi 1 °C superiore ai valori medi di riferimento del secolo scorso (in alcune zone dell’Atlantico si sono raggiunti 2,53 °C). Gli oceani accumulano energia scaldandosi ed è poi questa ad alimentare parte dei meccanismi atmosferici che portano a perturbazioni intense e spesso persistenti.
    (NOAA)
    Uno studio di attribuzione condotto sulle alluvioni di luglio 2021 in Europa, che avevano interessato soprattutto la Germania e il Belgio, aveva per esempio concluso che il riscaldamento globale causato dalle attività umane avesse reso più probabili quegli eventi atmosferici. Anche in quel caso la tempesta si era formata soprattutto in seguito all’aria calda e umida proveniente dal Mediterraneo, che da diversi anni nella stagione calda fa registrare temperature superficiali sopra la media.
    Le maggiori conoscenze sui fenomeni di questo tipo, maturate soprattutto negli ultimi anni, hanno permesso ai governi di avere informazioni più tempestive sull’evoluzione delle condizioni atmosferiche per fare prevenzione e mettere per lo meno in sicurezza la popolazione. La vastità delle alluvioni in Europa ha comportato una quantità relativamente ridotta di incidenti mortali, ma lo stesso non è avvenuto in Africa dove almeno mille persone sono morte nelle ultime settimane a causa delle forti piogge e delle alluvioni.
    Nell’Africa centrale e occidentale ci sono circa 3 milioni di sfollati a causa di una stagione delle piogge molto più intensa del solito, che secondo alcune previsioni porterà cinque volte la quantità di piogge che cadono in media a settembre nell’area. In questo caso il probabile nesso è con il progressivo aumento della temperatura media nel Sahel, l’ampia fascia di territorio che si estende da nord a sud tra il deserto del Sahara e la savana sudanese, e da ovest a est dall’oceano Atlantico al mar Rosso. Le alluvioni hanno interessato finora 14 paesi, causando grandi danni soprattutto alle piantagioni e peggiorando le condizioni già difficili di approvvigionamento di cibo per le popolazioni locali.
    Il Sahel, evidenziato in azzurro (Flockedereisbaer via Wikimedia)
    Lungo la costa orientale degli Stati Uniti forti piogge a inizio settimana hanno causato alluvioni e danni tra North Carolina e South Carolina. In alcune zone sono caduti 45 centimetri di pioggia in appena 12 ore, secondo le prime rilevazioni, che se confermate porterebbero a uno degli eventi atmosferici più estremi per quelle zone degli ultimi secoli. Le piogge sono state causate da una perturbazione che si era formata sull’Atlantico, ma senza energia sufficiente per diventare un uragano.
    Nelle ultime settimane anche in Asia ci sono state forti piogge, con un tifone che ha portato forti venti e temporali a Shanghai all’inizio della settimana, tali da rendere necessaria la sospensione dei voli aerei e l’interruzione di varie linee di servizio del trasporto pubblico in un’area metropolitana in cui vivono circa 25 milioni di persone. In precedenza c’erano state altre forti tempeste su parte della Cina, del Giappone e del Vietnam, con alluvioni, grandi danni e decine di morti.
    Naturalmente questi eventi atmosferici hanno avuto caratteristiche ed evoluzioni diverse e non sono strettamente legati l’uno all’altro, anche perché riguardano luoghi distanti tra loro e con differenti caratteristiche geografiche. In molte zone dell’emisfero boreale il passaggio dall’estate all’autunno è da sempre caratterizzato da tempeste, uragani e tifoni, ma le serie storiche e i dati raccolti indicano una maggiore frequenza di eventi estremi e con forti conseguenze per la popolazione.
    I modelli basati anche su quei dati indicano un aumento dei fenomeni di questo tipo, ma gli eventi atmosferici che si sono verificati negli ultimi anni hanno superato alcuni dei modelli più pessimistici rivelandosi quindi più estremi del previsto. La temperatura media globale è del resto di 1,29 °C superiore rispetto al periodo preindustriale, quando con le attività umane si immettevano molti meno gas serra rispetto a quanto avvenga oggi. Se questa tendenza dovesse mantenersi, e al momento non ci sono elementi per ritenere il contrario, entro la fine del 2032 si potrebbe raggiungere la soglia degli 1,5 °C decisi dall’Accordo di Parigi come limite massimo per evitare conseguenze ancora più catastrofiche legate al riscaldamento globale.
    (Copernicus)
    Già nel 2021 il Gruppo intergovernativo sul cambiamento climatico delle Nazioni Unite aveva segnalato in un proprio rapporto che: «L’impatto umano, in particolare legato alla produzione di gas serra, è probabilmente il principale fattore dell’intensificazione osservata su scala globale delle precipitazioni intense al suolo». Oltre a mostrare i primi indizi concreti sull’influenza delle attività umane per la maggiore intensificazione delle precipitazioni su Europa, Asia e Nordamerica, il rapporto aveva segnalato che le «precipitazioni diventeranno in genere più frequenti e più intense all’aumentare del riscaldamento globale». LEGGI TUTTO

  • in

    Come facciamo a calcolare la temperatura media della Terra

    Negli ultimi anni sono stati costantemente superati record di temperatura massima di vario genere: oltre alle temperature più alte mai misurate in specifiche località di varie parti del mondo, escono spesso nuovi dati che ci dicono ad esempio che un certo mese di aprile o un certo mese di giugno, o l’anno scorso, sono stati i più caldi mai registrati tenendo conto delle temperature medie mondiali. A queste notizie ci siamo forse abituati, ma forse non tutti sanno in che modo vengono calcolate le temperature medie dell’intero pianeta, una cosa tutt’altro che semplice.Giulio Betti, meteorologo e climatologo del Consiglio nazionale delle ricerche (CNR) e del Consorzio LaMMA, spesso intervistato dal Post e su Tienimi Bordone, spiega come si fa nel suo libro uscito da poco, Ha sempre fatto caldo! E altre comode bugie sul cambiamento climatico, che con uno stile divulgativo rispiega vari aspetti non banali del cambiamento climatico e smonta le obiezioni di chi nega che stia accadendo – o che sia causato dall’umanità. Pubblichiamo un estratto del libro.
    ***
    L’essere umano si è evoluto insieme alla sua più grande ossessione: misurare e quantificare qualsiasi cosa, dalle particelle subatomiche, i quark e i leptoni (10-18 metri), all’intero universo osservabile, il cui diametro è calcolato in 94 miliardi di anni luce. Si tratta di misurazioni precise e molto attendibili, alle quali si arriva attraverso l’uso di supertelescopi, come il James Webb, e di acceleratori di particelle. Cosa volete che sia, quindi, per un animale intelligente come l’uomo, nel fantascientifico 2024, ottenere una stima attendibile e verificabile della temperatura terrestre?
    Effettivamente è ormai un processo consolidato e routinario, quasi “banale” rispetto ad altri tipi di misurazioni dalle quali dipendono centinaia di processi e attività che la maggior parte di noi ignora. Ma come funziona?
    Partiamo dalla base: la rilevazione del dato termico, demandata alle mitiche stazioni meteorologiche, meglio note come centraline meteo. Queste sono disseminate su tutto il globo, sebbene la loro densità vari molto da zona a zona. In Europa e in Nord America, ad esempio, il numero di stazioni meteorologiche attive è più elevato che in altre aree, sebbene ormai la copertura risulti ottimale su quasi tutte le terre emerse.
    Quando parliamo di “stazioni meteorologiche”, infatti, ci riferiamo alle centraline che registrano temperatura e altri parametri meteorologici nelle zone continentali, mentre quelle relative ai mari utilizzano strumenti differenti e più variegati.
    I dati meteorologici su terra provengono da diversi network di stazioni, il più importante dei quali, in termini numerici, è il GHCN (Global Historical Climatology Network) della NOAA che conta circa 100.000 serie termometriche provenienti da altrettante stazioni; ognuna di esse copre diversi periodi temporali, cioè non tutte iniziano e finiscono lo stesso anno. La lunghezza delle varie serie storiche, infatti, può variare da 1 a 175 anni. Di queste 100.000 stazioni meteorologiche, oltre 20.000 contribuiscono alle osservazioni quotidiane in tempo reale; il dato raddoppia (40.000) nel caso del network della Berkeley Earth. Alla NOAA e alla Berkeley Earth si aggiungono altre reti di osservazione globale, quali il GISTEMP della NASA, il JMA giapponese, e l’HadCRUT dell’Hadley Center-University of East Anglia (UK).
    Oltre ai cinque principali network citati si aggiungono le innumerevoli reti regionali e nazionali i cui dati contribuiscono ad alimentare il flusso quotidiano diretto verso i centri globali.
    Le rilevazioni a terra, però, sono soltanto una parte delle osservazioni necessarie per ricostruire la temperatura del nostro pianeta, a queste infatti va aggiunta la componente marina, che rappresenta due terzi dell’intera superficie del mondo.
    I valori termici (e non solo) di tutti gli oceani e i mari vengono rilevati ogni giorno grazie a una capillare e fitta rete di osservazione composta da navi commerciali, navi oceanografiche, navi militari, navi faro (light ships), stazioni a costa, boe stazionarie e boe mobili.
    Parliamo, come facilmente intuibile, di decine di migliaia di rilevazioni in tempo reale che vanno ad alimentare diversi database, il più importante dei quali è l’ICOADS (International Comprehensive Ocean-Atmosphere Data Set). Quest’ultimo è il frutto della collaborazione tra numerosi centri di ricerca e monitoraggio internazionali (NOC, NOAA, CIRES, CEN, DWD e UCAR). Tutti rintracciabili e consultabili sul web. I dati raccolti vengono utilizzati per ricostruire lo stato termico superficiale dei mari che, unito a quello delle terre emerse, fornisce un valore globale univoco e indica un eventuale scarto rispetto a uno specifico periodo climatico di riferimento.
    Come nel caso delle stazioni a terra, anche per le rilevazioni marine esistono numerosi servizi nazionali e regionali. Tra gli strumenti più moderni ed efficaci per il monitoraggio dello stato termico del mare vanno citati i galleggianti del progetto ARGO. Si tratta di una collaborazione internazionale alla quale partecipano 30 nazioni con quasi 4000 galleggianti di ultima generazione. Questi ultimi sono progettati per effettuare screening verticali delle acque oceaniche e marine fino a 2000 metri di profondità; la loro distribuzione è globale ed essi forniscono 12.000 profili ogni mese (400 al giorno) trasmettendoli ai satelliti e ai centri di elaborazione. I parametri rilevati dai sensori includono, oltre alla temperatura alle diverse profondità, anche salinità, indicatori biologici, chimici e fisici.
    I dati raccolti da ARGO contribuiscono ad alimentare i database oceanici che vanno a completare, insieme alle osservazioni a terra, lo stato termico del pianeta.Ma cosa avviene all’interno di questi mastodontici database che, tra le altre cose, sono indispensabili per lo sviluppo dei modelli meteorologici? Nonostante la copertura di stazioni meteorologiche e marine sia ormai capillare, restano alcune aree meno monitorate, come ad esempio l’Antartide o alcune porzioni del continente africano; in questi casi si ricorre alla tecnica dell’interpolazione spaziale, che, in estrema sintesi, utilizza punti aventi valori noti (in questo caso di temperatura) per stimare quelli di altri punti. La superficie interpolata è chiamata “superficie statistica” e il metodo risulta un valido strumento anche per precipitazioni e accumulo nevoso, sebbene quest’ultimo sia ormai appannaggio dei satelliti.
    Oltre all’interpolazione si utilizza anche la tecnica della omogeneizzazione, che serve per eliminare l’influenza di alterazioni di rilevamento che possono subire le stazioni meteorologiche nel corso del tempo, tra le quali lo spostamento della centralina o la sua sostituzione con strumentazione più moderna. Ovviamente, dietro queste due tecniche, frutto della necessità di ottenere valori il più possibile corretti e attendibili, esiste un universo statistico molto complesso, che per gentilezza vi risparmio.
    Tornando a monte del processo, vale a dire allo strumento che rileva il dato, si incappa nel più classico dei dubbi: ma la misurazione è attendibile? Se il valore di partenza è viziato da problemi strumentali o di posizionamento, ecco che tutto il processo va a farsi benedire.
    Per quanto sia semplice insinuare dubbi sull’osservazione, è bene sapere che tutte le centraline meteorologiche ufficiali devono soddisfare i requisiti imposti dall’Organizzazione Mondiale della Meteorologia e che il dato fornito deve sottostare al “controllo qualità”.
    Se il signor Tupato da Castelpippolo in Castagnaccio [nota: Tupato in lingua maori significa “diffidente”] asserisce che le rilevazioni termiche in città sono condizionate dall’isola di calore e quindi inattendibili, deve sapere che questa cosa è nota al mondo scientifico da decenni e che, nonostante la sua influenza a livello globale sia pressoché insignificante, vi sono stati posti rimedi molto efficaci.
    Partiamo dall’impatto delle isole di calore urbano sulle serie storiche di temperatura. Numerosi studi scientifici (disponibili e consultabili online da chiunque, compreso il signor Tupato) descrivono le tecniche più note per la rimozione del segnale di riscaldamento cittadino dalle osservazioni. Tra queste, il confronto tra la serie termica di una località urbana e quella di una vicina località rurale; l’eventuale surplus termico della serie relativa alla città viene rimosso, semplicemente.Un altro metodo è quello di dividere le varie città in categorie legate alla densità di popolazione e correggere lo scostamento termico di quelle più popolate con le serie di quelle più piccole.
    In alcuni casi si è ricorso alla rilocalizzazione in aree rurali limitrofe delle stazioni meteorologiche troppo condizionate dall’isola di calore urbana, in questo caso il correttivo viene applicato dopo almeno un anno di confronto tra il vecchio e il nuovo sito.
    Poiché gli scienziologi del clima sono fondamentalmente dei maniaci della purezza dei dati e sono soliti mangiare pane e regressioni lineari, negli ultimi anni l’influenza delle isole di calore urbane viene rimossa anche attraverso l’utilizzo dei satelliti (con una tecnica chiamata remote sensing). Insomma, una faticaccia, alla quale si aggiunge anche il controllo, per lo più automatico, della presenza di errori sistematici o di comunicazione nei processi di osservazione e trasferimento dei dati rilevati.
    Tutto questo sforzo statistico e computazionale viene profuso per rimuovere il contributo delle isole di calore urbane dalle tendenze di temperatura globale che, all’atto pratico, è praticamente nullo. L’impatto complessivo delle rilevazioni provenienti da località urbane che alimentano i dataset globali è, infatti, insignificante, in quanto la maggior parte delle osservazioni su terra è esterna all’influenza delle isole di calore e si somma alla mole di dati provenienti da mari e oceani che coprono, lo ricordo, due terzi della superficie del pianeta.Quindi, anche senza la rimozione del segnale descritta in precedenza, l’influenza delle isole di calore urbane sulla temperatura globale sarebbe comunque modestissima. Se poi il signor Tupato vuol confrontare l’andamento delle curve termiche nel tempo noterà che non ci sono sostanziali differenze tra località rurali e località urbane: la tendenza all’aumento nel corso degli anni è ben visibile e netta in entrambe le categorie.
    Infine, l’aumento delle temperature dal 1880 a oggi è stato maggiore in zone scarsamente urbanizzate e popolate come Polo Nord, Alaska, Canada settentrionale, Russia e Mongolia, mentre è risultato minore in zone densamente abitate come la penisola indiana.
    Ecco che tutto questo ragionamento si conclude con un’inversione del paradigma: l’isola di calore urbana non ha alcun impatto sull’aumento della temperatura globale, ma l’aumento della temperatura globale amplifica l’isola di calore urbana. Durante le ondate di calore, infatti, le città possono diventare molto opprimenti, non tanto di giorno, quanto piuttosto nelle ore serali e notturne, quando la dispersione termica rispetto alle zone rurali risulta molto minore. La scarsa presenza di verde e le numerose superfici assorbenti rallentano notevolmente il raffreddamento notturno, allungando così la durata del periodo caratterizzato da disagio termico. Nelle zone di campagna o semirurali, al contrario, per quanto alta la temperatura massima possa essere, l’irraggiamento notturno è comunque tale da garantire almeno alcune ore di comfort.
    © 2024 Aboca S.p.A. Società Agricola, Sansepolcro (Ar)
    Giulio Betti presenterà Ha sempre fatto caldo! a Milano, insieme a Matteo Bordone, il 16 novembre alle 16, alla Centrale dell’Acqua, in occasione di Bookcity. LEGGI TUTTO

  • in

    Il grande tsunami che non ha visto nessuno

    Caricamento playerA settembre del 2023 le stazioni di rilevamento dei terremoti in buona parte del mondo registrarono una strana attività sismica diversa da quelle solitamente rilevate, e che durò per circa nove giorni. Il fenomeno era così singolare e insolito da essere classificato come un “oggetto sismico non identificato” (USO), un po’ come si fa con gli avvistamenti aerei di oggetti difficili da definire, i famosi UFO. Dopo circa un anno, quel mistero è infine risolto e lo studio del fenomeno ha permesso di scoprire nuove cose sulla propagazione delle onde sismiche nel nostro pianeta, sugli tsunami, sugli effetti del cambiamento climatico e sulla perdita di enormi masse di roccia e ghiaccio.
    L’onda sismica era stata rilevata dai sismometri a partire dal 16 settembre 2023 e aveva una forma particolare, più semplice e uniforme di quelle che solitamente si registrano in seguito a un terremoto. Era una sorta di rumore di fondo ed era stata registrata in diverse parti del mondo: i sensori delle stazioni di rilevamento sono molto sensibili e la Terra dopo un terremoto “risuona”, dunque si possono rilevare terremoti anche a grande distanza da dove sono avvenuti. Nei giorni in cui l’onda continuava a essere rilevata e poi ancora nelle settimane seguenti, iniziarono a emergere alcuni indizi su quale potesse essere la causa dell’USO. Il principale indiziato era un fiordo dove si era verificata una grande frana che aveva portato a un’onda anomala e a devastazioni a diversi chilometri di distanza.
    Tutto aveva avuto infatti inizio in una delle aree più remote del pianeta lungo la costa orientale della Groenlandia, più precisamente dove inizia il fiordo Dickson. È un’insenatura lunga circa 40 chilometri con una forma particolare a zig zag, che termina con una curva a gomito qualche chilometro prima di immettersi nel fiordo Kempes, più a oriente. Niente di strano o singolare per una costa frastagliata e intricatissima, con centinaia di fiordi, come quella della Groenlandia orientale.

    Sulla costa, qualche chilometro prima della curva a gomito, c’era un rilievo di circa 1.200 metri affacciato su parte del ghiacciaio sottostante che raggiunge poi l’insenatura. A causa dell’aumento della temperatura, il ghiacciaio non era più in grado di sostenere il rilievo, che a settembre dello scorso anno era quindi collassato producendo un’enorme slavina con un volume stimato intorno ai 25 milioni di metri cubi di detriti (circa dieci volte la Grande Piramide di Giza in Egitto).
    Questa grande massa di ghiaccio e rocce si tuffò nel fiordo spingendosi fino a 2 chilometri di distanza e producendo uno tsunami che raggiunse un’altezza massima stimata di 200 metri. A causa della particolare forma a zig-zag del fiordo, l’onda non raggiunse l’esterno dell’insenatura e continuò a infrangersi al suo interno per giorni, producendo uno sciabordio (più precisamente una “sessa”) che fu poi rilevato dai sismometri incuriosendo infine alcuni esperti di terremoti in giro per il mondo.

    Come ha spiegato il gruppo di ricerca che ha messo insieme tutti gli indizi in uno studio pubblicato su Science, con la collaborazione di 68 sismologi in 15 paesi diversi, dopo pochi minuti dalla prima grande onda lo tsunami si ridusse a circa 7 metri e nei giorni seguenti sarebbe diventato di pochi centimetri, ma sufficienti per produrre onde sismiche rilevabili a causa della grande massa d’acqua coinvolta. Per pura coincidenza nelle settimane prima del collasso del rilievo un gruppo di ricerca aveva collocato alcuni sensori nel fiordo per misurarne la profondità, inconsapevole sia del rischio che stava correndo in quel tratto dell’insenatura sia di creare le condizioni per raccogliere dati che sarebbero stati utili per analizzare lo tsunami che si sarebbe verificato poco tempo dopo.
    Per lo studio su Science, il gruppo di ricerca internazionale ha infatti realizzato un proprio modello al computer per simulare l’onda anomala e ha poi confrontato i dati della simulazione con quelli reali, trovando molte corrispondenze per confermare le teorie iniziali sulle cause dell’evento sismico. L’andamento stimato dell’onda, compresa la sua riduzione nel corso del tempo, corrispondeva alle informazioni che potevano essere dedotte dalle rilevazioni sismiche.
    La ricerca ha permesso di approfondire le conoscenze sulla durata e sulle caratteristiche che può assumere uno tsunami in certe condizioni di propagazione, come quelle all’interno di un’insenatura. Lo studio di questi fenomeni riguarda spesso grandi eventi sismici, come quello che interessò il Giappone nel 2011, e che tendono a esaurirsi in alcune ore in mare aperto. L’analisi di fenomeni su scala più ridotta, ma comunque rilevante per la loro portata, può offrire nuovi elementi per comprendere meglio in generale sia gli tsunami sia le cause di alcuni eventi insoliti.

    La frana è stata inoltre la più grande a essere mai stata registrata nella Groenlandia orientale, hanno detto i responsabili della ricerca. Le onde hanno distrutto un’area un tempo abitata da una comunità Inuit, che si era stabilita nella zona circa due secoli fa. Il fatto che l’area fosse rimasta pressoché intatta fino allo scorso settembre indica che nel fiordo non si verificavano eventi di grande portata da almeno duecento anni.
    Su Ella, un’isola che si trova a circa 70 chilometri da dove si è verificata la frana, lo tsunami ha comunque causato la distruzione di parte di una stazione di ricerca. L’isola viene utilizzata da scienziati e dall’esercito della Danimarca, che ha sovranità sulla Groenlandia, ma era disabitata al momento dell’ondata.
    In un articolo di presentazione della loro ricerca pubblicato sul sito The Conversation, gli autori hanno ricordato che l’evento iniziale si è verificato in pochi minuti, ma che le sue cause sono più antiche: «Sono stati decenni di riscaldamento globale ad avere fatto assottigliare il ghiacciaio di diverse decine di metri, facendo sì che il rilievo soprastante non fosse più stabile. Al di là della particolarità di questa meraviglia scientifica, questo evento mette in evidenza una verità più profonda e inquietante: il cambiamento climatico sta riplasmando il nostro pianeta e il nostro modo di fare scienza in modi che solo ora iniziamo a comprendere».
    Il gruppo di ricerca ha anche segnalato come fino a qualche anno fa sarebbe apparsa assurda l’ipotesi che una sessa potesse durare per nove giorni, «così come un secolo fa il concetto che il riscaldamento globale potesse destabilizzare dei versanti nell’Artico, portando a enormi frane e tsunami. Eventi di questo tipo vengono ormai registrati annualmente proprio a causa dell’aumento della temperatura media globale, delle estati artiche con temperature spesso al di sopra della media e a una maggiore presenza del ghiaccio stagionale rispetto a un tempo. LEGGI TUTTO

  • in

    Il cambiamento climatico fa allungare le giornate

    Caricamento playerLa fusione dei ghiacci e altri effetti collegati al cambiamento climatico stanno contribuendo a fare aumentare lievemente la durata dei giorni sulla Terra. Il fenomeno è noto da tempo, ma una ricerca pubblicata nel corso dell’estate ha segnalato che le giornate si stanno allungando più velocemente rispetto a quanto calcolato in passato, cosa che potrebbe avere conseguenze sulle tecnologie che si basano sull’ora esatta come per esempio i sistemi di navigazione satellitare.
    Il moto di rotazione della Terra non è regolare – a causa dell’influenza della Luna e di altri fattori – e ciò comporta che con il passare del tempo il nostro pianeta accumuli un certo ritardo, rispetto agli orologi atomici con i quali calcoliamo con maggiore precisione il trascorrere del tempo. Il rallentamento è in parte prevedibile e calcolabile, ma può cambiare nel caso in cui cambino alcune variabili.
    Per questo un gruppo internazionale di ricerca finanziato in parte dalla NASA ha utilizzato dati storici e osservazioni satellitari per valutare i cambiamenti nella distribuzione delle masse d’acqua nella Terra. Lo studio si è concentrato in particolare sui cambiamenti determinati dalla fusione dei ghiacci polari, che porta nuove masse d’acqua a distribuirsi intorno all’equatore facendo sì che il nostro pianeta, che non è una sfera perfetta, appaia lievemente schiacciato ai poli.
    Questa diversa distribuzione delle masse d’acqua, insieme ad altri fattori, fa sì che la Terra rallenti lievemente il proprio moto di rotazione e che le giornate si allunghino. Per intendersi, è un fenomeno simile a quello che avviene quando i pattinatori su ghiaccio si abbassano e allargano le braccia per ridurre la loro velocità di rotazione, o quando si gira su se stessi stando seduti su una sedia da ufficio e si allargano o chiudono le braccia modificando la velocità di rotazione.

    Lo studio ha valutato le variazioni prendendo in considerazione il periodo tra il 1900 e il 2018 e ha notato un’accelerazione nell’allungamento delle giornate a partire dal 2000. Negli ultimi 18 anni si è arrivati a una media di allungamento della durata del giorno di 1,33 millisecondi per secolo, il dato più alto mai registrato rispetto ai cento anni precedenti quando la variazione oscillava tra 0,3 e 1 millisecondi (la variazione non è costante e ci sono oscillazioni nel corso del tempo).
    Secondo il gruppo di ricerca il lieve allungamento delle giornate dovuto alla fusione dei ghiacci e alla ridistribuzione delle masse d’acqua, che si aggiunge agli altri fattori che determinano il fenomeno, potrebbe decelerare entro il 2100 nel caso dell’adozione di politiche efficaci per ridurre le emissioni di gas serra. Come per altri fenomeni legati al cambiamento climatico, infatti, anche se smettessimo oggi di immettere nell’atmosfera nuova anidride carbonica e altri gas serra sarebbero comunque necessari decenni prima di riscontrare benefici significativi, a causa di una certa inerzia del sistema.
    Lo studio ha inoltre calcolato che, nel caso di ulteriori aumenti delle emissioni, l’allungamento del giorno dovuto al cambiamento climatico potrebbe arrivare a 2,62 millisecondi per secolo, superando quindi gli effetti della Luna e degli altri fattori che contribuiscono al rallentamento del moto di rotazione. LEGGI TUTTO