More stories

  • in

    Produrre cibo dalla plastica, o almeno provarci

    Ogni anno vengono prodotti oltre 400 milioni di tonnellate di rifiuti derivanti dall’impiego dei vari tipi di plastica usati per gli imballaggi, i contenitori, gli abiti sintetici e molti altri prodotti. Una percentuale crescente di questi rifiuti viene riciclata, ma l’impatto della plastica è ancora oggi una delle principali preoccupazioni legate alla contaminazione degli ecosistemi e alla tutela della nostra salute. Mentre si fatica a concordare nuovi trattati internazionali per ridurre la produzione e gli sprechi di plastica c’è chi sta sperimentando una via alternativa un po’ più creativa: renderla commestibile.L’idea non è completamente nuova, ma negli ultimi anni ha avuto qualche maggiore attenzione in seguito a una iniziativa della Defense Advanced Research Projects Agency (DARPA), l’agenzia del dipartimento della Difesa degli Stati Uniti che si occupa dello sviluppo di nuove tecnologie da utilizzare in ambito militare. Nel 2019, la DARPA invitò i gruppi di ricerca interessati a proporre nuovi sistemi per ridurre la quantità di rifiuti prodotti dai soldati quando sono in guerra o lavorano per dare sostegno alla popolazione in seguito a emergenze e disastri naturali. L’agenzia era interessata a trovare sistemi per convertire gli imballaggi in nuovi prodotti, possibilmente sul posto, in modo da ridurre la produzione di rifiuti e rendere meno onerosa la loro gestione.
    La richiesta portò alla presentazione di progetti da vari centri di ricerca e al finanziamento da parte della DARPA di alcuni di quelli più promettenti. Uno di questi è gestito dalla Michigan Technological University (MTU) e consiste nell’impiegare sostanze e microorganismi per degradare la plastica e trasformarla in qualcos’altro. Il sistema per ora è dedicato a ricavare materiale organico che sia commestibile, mentre solo in un secondo momento si penserà ai modi in cui utilizzarlo.
    La plastica viene triturata e successivamente inserita in un reattore dove viene aggiunto l’idrossido di ammonio (il composto chimico che in soluzione acquosa chiamiamo ammoniaca) ad alta temperatura. Non tutta la plastica è uguale, la parola stessa è un termine ombrello che usiamo per riferirci a materiali molto diversi tra loro, di conseguenza non tutto ciò che viene sottoposto al trattamento reagisce allo stesso modo.

    Alcuni tipi di plastica come il polietilene tereftalato (PET), il materiale con cui sono solitamente fatte le bottiglie, si disgrega dopo questo primo passaggio, mentre altre plastiche hanno necessità di ulteriori trattamenti ad alte temperature e in assenza di ossigeno, che vengono effettuati in un reattore a parte. Le plastiche di questo tipo possono essere convertite in carburante oppure in sostanze lubrificanti, entrambe utili in un ipotetico scenario in cui il processo possa essere eseguito direttamente sul campo dai soldati come richiesto dalla DARPA.
    Ciò che si è ottenuto dal PET con il passaggio nel reattore viene invece dato in pasto a colonie di batteri, in grado di nutrirsi della plastica, che ha tra i propri componenti anche composti organici. Come ha raccontato al sito Undark, il gruppo di ricerca della MTU inizialmente riteneva che trovare i batteri più adatti per nutrirsi della plastica processata avrebbe richiesto molto tempo, ma le cose sono andate diversamente. In breve tempo, il gruppo di ricerca ha infatti notato che i batteri che normalmente degradano il compost (fatto per lo più di rifiuti e scarti alimentari) si adattano facilmente alla plastica trattata nel reattore. L’ipotesi è che la struttura a livello molecolare di alcuni composti delle piante abbia alcune caratteristiche in comune con ciò che viene processato con l’idrossido di ammonio, favorendo il banchetto dei batteri.
    Dopo che i batteri hanno consumato e trasformato la plastica, la poltiglia che si ottiene viene fatta essiccare fino a ottenere una polvere che contiene i principali macronutrienti: proteine, carboidrati e grassi. Il gruppo di ricerca ne ha elencato le caratteristiche in uno studio pubblicato lo scorso anno sulla rivista Trends in Biotechnology, ma il passaggio dal bidone della plastica alle razioni dei soldati o dei piatti in qualche ristorante non sarà così immediata.
    Da tempo si discute sull’opportunità di utilizzare particolari batteri e altri microrganismi come fonte di proteine e di altre sostanze nutrienti. La loro coltivazione richiede meno risorse e acqua rispetto a ciò che viene coltivato nei campi e per questo c’è chi sostiene che potrebbero affiancare la produzione di cibo più tradizionale riducendo l’impatto ambientale dell’intera catena alimentare. Le stime variano sensibilmente, ma si ritiene che circa un terzo di tutte le emissioni di gas serra sia prodotto dal settore alimentare.
    La polvere ottenuta dal processo messo a punto dalla MTU è stata testata senza trovare per ora sostanze note per essere tossiche. Il preparato è stato dato in pasto ad alcuni nematodi (vermi cilindrici) senza conseguenze e sono stati avviati test sui ratti, per effettuare osservazioni in periodi di tempo più lunghi rispetto alle settimane di vita dei nematodi. I risultati dai test sui ratti saranno essenziali per procedere con una prima richiesta alla Food and Drug Administration (FDA), l’agenzia governativa statunitense che tra le altre cose si occupa di sicurezza alimentare, per dichiarare il consumo della plastica trasformata in cibo sicuro per gli esseri umani.
    Non è comunque ancora detto che la sperimentazione porti a qualche risultato concreto, come del resto spesso avviene con i progetti finanziati dalla DARPA. L’agenzia è nota per promuovere iniziative di ricerca molto ambiziose se non impossibili da realizzare, confidando che almeno alcune delle sperimentazioni avviate portino da qualche parte. Il cibo dalla plastica potrebbe rivelarsi molto utile per migliorare la gestione della logistica, considerato che il trasferimento di cibo e rifornimenti è uno degli aspetti più onerosi per gli eserciti soprattutto se attivi in territori lontani dal loro paese, come avviene quasi sempre nel caso degli Stati Uniti.
    Se dovesse rivelarsi sicuro e affidabile, il sistema per convertire alcuni tipi di plastica in cibo potrebbe essere adottato in futuro per scopi civili, ma lo stesso gruppo di ricerca della MTU ha qualche dubbio in proposito. Stephen Techtmann, uno dei responsabili del progetto, ha detto sempre a Undark che potrebbe essere molto difficile convincere le persone a mangiare qualcosa che è stato ottenuto mettendo all’ingrasso dei batteri con la plastica, mentre ci potrebbero essere maggiori opportunità in particolari circostanze legate a strette necessità di sopravvivenza nelle emergenze: «Penso ci possa essere qualche preoccupazione in meno sul fattore disgusto nel caso in cui si tratti di un: “Questo mi terrà in vita per un altro paio di giorni”».
    I batteri sono comunque strettamente legati alla nostra alimentazione, come alcuni tipi di funghi e altri microrganismi. Li ingeriamo quando mangiamo un vasetto di yogurt, assaggiamo un formaggio o proviamo del kimchi e altri cibi fermentati. Oltre a rendere più semplici e sicuri da conservare alcuni elementi, contribuiscono alla salute del microbiota, cioè l’insieme dei microrganismi che vivono nel nostro intestino e che ci aiutano a digerire gli alimenti e a regolare numerose altre attività dell’organismo. Naturalmente non tutti i batteri sono commestibili (alcuni possono causare gravi danni) e per questo sono necessarie verifiche sulla sicurezza alimentare.
    I batteri impiegati da millenni per la produzione dello yogurt partono dal latte, quindi da una sostanza che sappiamo essere commestibile e l’idea di usarli fa sicuramente un effetto diverso rispetto alla trasformazione in alimenti della plastica, di cui sono noti gli effetti inquinanti e tossici. Ma in chimica una sostanza può sparire nel corso di una reazione, semplicemente perché si trasforma in qualcosa di diverso, che in questo caso secondo il gruppo di ricerca potrebbe aiutare almeno in parte a sfamare il mondo. LEGGI TUTTO

  • in

    Quando finisce questo caldo?

    Caricamento playerPiù o meno dall’8 agosto l’Italia e vari altri paesi europei sono interessati da un’ondata di calore, cioè da temperature inusualmente più alte rispetto alla media, che ha fatto registrare massime superiori ai 36 o ai 38 °C in molte località. Il caldo è dovuto all’anticiclone sub-tropicale africano, un’area atmosferica di alta pressione proveniente dall’Africa che ha mantenuto il meteo mediamente stabile (lo si può immaginare come una grande montagna di aria calda che impedisce il passaggio di correnti più fresche).
    Nell’ultimo bollettino sulle ondate di calore, il ministero della Salute ha previsto per il 15 agosto il più alto livello di rischio per il caldo in 21 delle 27 città dove vengono fatti i monitoraggi, tra cui Roma, Milano, Napoli, Torino, Firenze e Bologna. Il livello di rischio più alto, che corrisponde al 3 ed è informalmente chiamato “bollino rosso”, segnala le condizioni meteorologiche che possono avere effetti negativi per la salute non solo per le persone più vulnerabili, come anziani, bambini molto piccoli e malati cronici, ma anche per le persone sane. La situazione sarà più o meno invariata anche il 16 agosto; migliorerà però fino al livello 1 a Milano e Torino.
    Nei giorni successivi le cose dovrebbero cambiare perché è previsto l’arrivo di una perturbazione proveniente dall’oceano Atlantico che porterà precipitazioni e un abbassamento delle temperature. Il servizio meteorologico dell’Aeronautica militare ha previsto temperature più o meno stazionarie per le giornate di giovedì (Ferragosto) e venerdì, e un lieve raffrescamento nel corso del fine settimana, in particolare domenica e soprattutto nelle regioni del Centro-Nord.

    Rispetto ad altre zone d’Europa, comunque, in Italia quest’estate non sono stati registrati dei particolari record di temperatura. È andata peggio alla Spagna e alla Grecia, dove le alte temperature degli ultimi giorni hanno favorito l’espansione di un vasto incendio vicino ad Atene.

    – Leggi anche: Perché si muore per il caldo LEGGI TUTTO

  • in

    L’iceberg più grande del mondo è finito in un loop

    Caricamento playerDa qualche mese l’iceberg più grande del mondo, noto con il nome di A-23A, è finito in una sorta di vortice: sta girando lentamente su se stesso, intrappolato in una corrente che si è formata tra esso e la montagna sottomarina sopra cui galleggia. L’iceberg è vicino alle isole Orcadi Meridionali, poco più di 600 chilometri a nord est della Penisola Antartica, l’estremo settentrionale del continente che si protende verso le coste del Sudamerica. È grande 3.880 chilometri quadrati, più dell’intera Valle d’Aosta, e ha un’altezza di più di trecento metri, tre volte quella del Bosco Verticale di Milano. La dimensione ne rende i movimenti impercettibili, ma dalle immagini satellitari si vede chiaramente che dallo scorso aprile ogni 24 giorni compie un giro completo su se stesso: se dureranno ancora per molto, questi movimenti ininterrotti potrebbero portare al suo scioglimento, con conseguenze sull’ecosistema marino.

    L’iceberg è in un’area dell’oceano Antartico conosciuta come “vicolo degli iceberg”: di solito i grossi iceberg ci passano velocemente per dirigersi poi altrove grazie alle correnti. Questo non è successo all’iceberg A-23A: è rimasto intrappolato in una cosiddetta “colonna di Taylor”, una corrente che si forma attorno alle montagne sottomarine creando proprio una sorta di vortice che fa ruotare lentamente l’acqua in senso antiorario attorno alla cima. La montagna sottomarina su cui sta ruotando l’A-23A è larga circa 100 chilometri e alta circa mille metri.
    Non sembra possibile stabilire per quanto tempo l’iceberg rimarrà lì e quali saranno le conseguenze. I ricercatori che ne seguono la traiettoria sostengono che il fatto che si sia bloccato in acque ancora fredde ne abbia posticipato lo scioglimento, a cui solitamente vanno comunque incontro gli iceberg che si dirigono a nord, dove le acque sono più calde. Se trascorresse un periodo prolungato nel vortice, potrebbe comunque finire per sciogliersi in modo significativo a causa del movimento, e danneggiare così l’ecosistema marino della zona. Secondo alcuni studiosi è però possibile che alla fine finisca per seguire il percorso di altri grossi iceberg, come quello dell’A-68A, che nel 2020 aveva ruotato per qualche mese un po’ più a ovest rispetto a dov’è ora l’A-23A prima di liberarsi dalle correnti e dirigersi verso acque più calde, e finire per sciogliersi comunque.

    L’iceberg A-23A aveva già avuto un percorso tormentato, a partire da quando nel 1986 si era staccato da un altro iceberg, l’A-23, uno dei tre che si erano staccati quell’anno dalla piattaforma di ghiaccio Filchner-Ronne, nel mare di Weddell, in Antartide. Da allora era rimasto fermo per 34 anni.
    È piuttosto comune per gli iceberg più grandi rimanere fermi per molto tempo: il grande spessore del ghiaccio ne ostacola infatti la deriva, soprattutto nelle acque intorno alla Penisola Antartica e in quelle del mare di Weddell, che sono relativamente basse. Capita dunque che gli iceberg più grandi si incaglino, restino fermi per un po’, ruotando lievemente su loro stessi, prima di riuscire a superare le asperità del fondale e raggiungere acque più profonde.
    Nel 2020 l’A-23A ha iniziato ad allontanarsi. Alex Brearley, uno studioso a capo del gruppo di ricerca della British Antarctic Survey che ne studia i movimenti, ha detto che a dicembre, quando ha guidato una spedizione, ci è voluto un giorno intero per circumnavigarlo tutto. È talmente vasto che «sembra proprio terraferma, è l’unico modo per descriverlo», ha detto Brearley al New York Times.

    Il distaccamento degli iceberg è un processo naturale molto comune e ben noto ai ricercatori, che indirettamente viene influenzato dal cambiamento climatico e dal riscaldamento delle acque. La ricerca si occupa molto dei movimenti degli iceberg, perché conoscerne dimensioni e caratteristiche è importante per prevedere come si potrebbero muovere e verso quale direzione, soprattutto per garantire la sicurezza delle rotte commerciali vicine all’Antartide. LEGGI TUTTO

  • in

    Bere il mare

    In Sicilia da alcune settimane si discute sulla riapertura del dissalatore di Porto Empedocle, in provincia di Agrigento, per trattare l’acqua di mare e renderla potabile in modo da ridurre i forti problemi legati alla siccità degli ultimi mesi. La Regione ha previsto un milione di euro di spesa e alcuni mesi di lavoro per riattivare l’impianto fermo da 12 anni, ma sono stati espressi alcuni dubbi considerati i costi. I dissalatori consumano infatti molta energia e producono acque di scarto difficili da gestire: per questo sono ancora relativamente poco utilizzati in tutto il mondo, anche se negli ultimi decenni ci sono stati progressi nel miglioramento dei sistemi per renderli più efficienti dal punto di vista energetico.Il 97 per cento dell’acqua presente sulla Terra è salato: è presente nei mari e negli oceani e non può essere bevuto né tanto meno utilizzato per l’agricoltura. Il resto dell’acqua è dolce, con il 2 per cento conservato nei ghiacciai, nelle calotte polari e negli accumuli di neve sulle montagne e l’1 per cento disponibile per le nostre esigenze e quelle dei numerosi altri organismi che per vivere hanno bisogno di acqua quasi totalmente priva di sali, a cominciare dal cloruro di sodio (NaCl, quello che comunemente chiamiamo “sale da cucina”). In media l’acqua marina contiene il 3,5 per cento circa di sale, una concentrazione sufficiente per causare danni ai reni ed essere letale.
    Quell’1 per cento di acqua dolce sarebbe più che sufficiente, se non fosse che non è distribuito uniformemente nel pianeta: ci sono aree in cui abbonda e altre in cui scarseggia, in assoluto oppure a seconda delle stagioni e delle condizioni atmosferiche. Il cambiamento climatico in corso negli ultimi decenni ha peggiorato le cose con aree che sono diventate più aride, riducendo le possibilità di accesso per milioni di persone all’acqua dolce. Stando alle stime dell’Organizzazione mondiale della sanità (OMS), circa 2 miliardi di persone vivono in zone del mondo in cui il reperimento dell’acqua è difficoltoso e solo nel 2022 almeno 1,7 miliardi di persone hanno avuto accesso per lo più ad acqua contaminata, con seri rischi per la salute.
    Considerate le difficoltà nel disporre di acqua dolce, ci si chiede spesso perché non si possa sfruttare su larga scala quella degli oceani, privandola dei sali che non la rendono bevibile. Le tecnologie per farlo ci sono da tempo e alcune furono sperimentate millenni fa, eppure non siamo ancora in grado di trasformare l’acqua di mare in acqua potabile in modo conveniente e sostenibile. In un certo senso è un grande paradosso: il pianeta è ricolmo d’acqua, ma quella che possiamo usare per sopravvivere è una minuscola frazione.
    L’oceano Pacifico è di gran lunga la più vasta distesa d’acqua salata della Terra (NOAA)
    Per molto tempo il sistema più pratico per dissalare l’acqua è consistito nell’imitare ciò che avviene in natura facendola evaporare. Grazie al calore del Sole e a quello del nostro pianeta, ogni giorno una enorme quantità di acqua evapora dagli oceani, dai fiumi e dagli altri corsi d’acqua, raggiungendo gli strati dell’atmosfera dove si formano le nuvole e di conseguenza le piogge, che porteranno l’acqua dolce a cadere al suolo. Con la “dissalazione evaporativa” si fa artificialmente qualcosa di analogo: l’acqua del mare viene scaldata e fatta evaporare, in modo che si separi da buona parte dei sali. Il vapore acqueo viene poi fatto raffreddare in modo che condensi e che si possa recuperare l’acqua quasi priva di sali.
    Negli anni sono state sviluppate varie tipologie di dissalatori evaporativi, per lo più per provare a rendere il più efficiente possibile il processo dal punto di vista energetico, ma il concetto di base rimane più o meno lo stesso. I dissalatori di questo tipo sono impiegati in molti impianti in giro per il mondo, specialmente nelle aree costiere lungo il Golfo in Medio Oriente, dove spesso si sfrutta la grande disponibilità di combustibili fossili per alimentare gli stabilimenti. Il processo richiede infatti grandi quantità di energia e per questo molti gruppi di ricerca hanno sperimentato alternative nei decenni passati.
    Il progresso più importante nelle tecnologie di dissalazione fu raggiunto negli anni Sessanta, quando fu messo a punto il processo di “osmosi inversa”. L’acqua di mare viene fatta passare ad alta pressione attraverso una membrana semipermeabile, che permette solo alle molecole d’acqua di passare dall’altra parte, obbligandola a lasciarsi alle spalle gli ioni dei sali che la rendono salata.
    In un dissalatore a osmosi inversa, l’acqua salata viene aspirata dal mare attraverso potenti pompe e fatta fluire tra grandi grate per separarla dalle impurità più grandi. L’acqua attraversa poi membrane con pori via via più piccoli per bloccare il passaggio della sabbia, dei batteri e di altre sostanze. L’acqua è infine pronta per essere spinta ad alta pressione attraverso una membrana che ha solitamente pori di dimensioni intorno a 0,1 nanometri (un nanometro è un miliardesimo di metro), tali da bloccare il passaggio dei sali, ma non delle molecole d’acqua.

    Da un punto di vista energetico, la dissalazione per osmosi inversa è più conveniente rispetto a quella per evaporazione, perché non richiede di scaldare l’acqua. Alcuni impianti sono arrivati a produrre acqua dolce con un consumo di 2 kWh (“kilowattora”) per metro cubo d’acqua, un risultato importante se si considera che negli anni Settanta il consumo era di 16 kWh per metro cubo. In media si stima che la dissalazione dell’acqua con i metodi più diffusi comporti un consumo di 3 kWh/m3 e che negli ultimi cinquant’anni si sia ridotto di circa dieci volte. L’attuale consumo è paragonabile a quello del trasporto dell’acqua su lunghe distanze verso i luoghi in cui manca, mentre è ancora lontano da quello degli impianti che forniscono localmente l’acqua dolce disponibile sul territorio.
    L’osmosi inversa, nelle sue varie declinazioni, ha contribuito più di altre tecnologie a ridurre l’impatto energetico della dissalazione, ma ha comunque i suoi limiti. A causa della forte pressione, le membrane per realizzarla devono essere sostituite di frequente e la loro costruzione è laboriosa e delicata. Inoltre, man mano che si estrae l’acqua dolce, l’acqua marina di partenza diventa sempre più salata e sempre più difficile da separare dai sali che contiene. Oltre un certo limite non si può andare e si ottiene una salamoia che deve essere gestita e smaltita.
    I livelli di efficienza variano molto a seconda degli impianti, ma in media un dissalatore a osmosi inversa produce un litro di salamoia per ogni litro di acqua dolce (ci sono analisi più o meno pessimistiche sul rapporto). Si stima che ogni giorno siano prodotti circa 140 miliardi di litri di salamoia, la maggior parte dei quali vengono dispersi nuovamente in mare. Lo sversamento avviene di solito utilizzando condotte sottomarine che si spingono lontano da quelle che effettuano i prelievi, in modo da evitare che sia aspirata acqua di mare troppo salata.
    L’impianto di desalinizzazione a Barcellona, Spagna (AP Photo/Emilio Morenatti)
    Data l’alta quantità di sali al suo interno, la salamoia è più densa della normale acqua di mare e tende quindi a rimanere sul fondale marino prima di disperdersi nel resto dell’acqua marina. La maggiore concentrazione di sali potrebbe avere conseguenze sugli ecosistemi marini e per questo il rilascio della salamoia in mare è studiato da tempo, anche se per ora le ricerche non hanno portato a trovare molti indizi sugli eventuali effetti deleteri. In alcuni paesi ci sono comunque leggi che regolamentano le modalità di sversamento, per esempio richiedendo l’utilizzo di tubature che si spingano più al largo e che abbiano molte diramazioni, in modo da rilasciare la salamoia in più punti favorendo la sua diluizione col resto dell’acqua marina.
    Lo sversamento in mare non è comunque l’unica tecnica per liberarsi della salamoia. Un’alternativa è lasciare che evapori al sole, raccogliendo poi i sali in un secondo momento per utilizzarli in altre attività industriali. È però un processo che richiede del tempo, la disponibilità di porzioni di territorio sufficientemente grandi e un clima che renda possibile l’evaporazione in buona parte dell’anno. In alternativa l’evaporazione può essere ottenuta scaldando la salamoia, ma anche in questo caso sono necessarie grandi quantità di energia e il processo non è efficiente.
    Non tutte le salamoie sono uguali perché la concentrazione di sali non è uniforme e omogenea negli oceani, per questo alcuni gruppi di ricerca stanno esplorando la possibilità di sfruttarle per ottenere minerali particolarmente richiesti. L’interesse principale è per il litio, una materia prima molto richiesta per la produzione di batterie e dispositivi elettrici. La sua estrazione viene effettuata di solito in alcune zone aride del mondo, a cominciare da quelle del Sudamerica, dove acque sature di sali vengono lasciate evaporare sotto al Sole per mesi. Sono in fase di sperimentazione sistemi alternativi di estrazione, ma separare il litio dalle altre sostanze non è semplice e richiede comunque energia.
    In Arabia Saudita, uno dei paesi che hanno più investito nello sviluppo di tecnologie di dissalazione a causa della ricorrente mancanza di acqua dolce, è in progettazione un impianto per estrarre dalla salamoia ulteriore acqua da rendere potabile e al tempo stesso ottenere cloruro di sodio. Questa sostanza è fondamentale per molti processi dell’industria chimica, ma deve avere un alto livello di purezza difficile da raggiungere tramite i classici processi di desalinizzazione. L’impianto utilizzerà particolari membrane per separare le impurità e produrre di conseguenza del cloruro di sodio puro a sufficienza, almeno nelle intenzioni dei responsabili dell’iniziativa.
    Altri gruppi di ricerca si sono invece orientati verso il perfezionamento di tecniche che prevedono l’applicazione di una corrente elettrica per diluire la salamoia, in modo da poter estrarre più quantità di acqua dolce attraverso l’osmosi inversa. Ulteriori approcci prevedono invece l’impiego di solventi chimici che a basse temperature favoriscono la separazione delle molecole d’acqua dal resto, permettendo di nuovo un maggiore recupero di acqua dolce dalla salamoia.
    Come ha spiegato al sito di Nature un ingegnere ambientale della Princeton University (Stati Uniti): «Per molti anni abbiamo mancato il bersaglio. Ci siamo concentrati sull’acqua come un prodotto: secondo me, l’acqua dovrebbe essere un prodotto secondario di altre risorse». L’idea, sempre più condivisa, è che per rendere economicamente vantaggiosa la desalinizzazione ci si debba concentrare sulle opportunità derivanti dallo sfruttamento delle sostanze di risulta, lasciando l’acqua dolce a tutti e senza costi. Non tutti sono però convinti della sostenibilità di questa impostazione, soprattutto per la sostenibilità in generale del settore.
    I dissalatori attivi nel mondo sono circa 15-20mila con dimensioni, capacità e tecnologie impiegate che variano a seconda dei paesi e delle necessità. Si stima che dall’acqua dolce prodotta con la desalinizzazione dipendano almeno 300 milioni di persone, anche se le stime variano molto ed è difficile fare calcoli precisi. L’impatto energetico dei dissalatori è però ancora molto alto e di conseguenza il costo di ogni litro di acqua dolce prodotto in questo modo rispetto ai luoghi dove l’acqua dolce è naturalmente disponibile.
    Un operaio al lavoro sui filtri di un impianto di dissalazione a San Diego, California, Stati Uniti (AP Photo/Gregory Bull)
    Gli impianti per dissalare l’acqua sono generalmente più convenienti quando possono essere costruiti direttamente in prossimità delle aree dove scarseggia l’acqua dolce, ma solo in alcune parti del mondo le zone aride si trovano lungo aree costiere. Per le comunità che vivono in luoghi siccitosi lontano dai mari il trasporto dell’acqua deve essere comunque gestito in qualche modo. Ci sono quindi casi in cui è più economico trasportare acqua dolce da una fonte distante rispetto a desalinizzare quella di mare.
    In futuro la desalinizzazione potrebbe riguardare una quantità crescente di persone a causa dell’aumento della salinità di alcune riserve d’acqua soprattutto lungo le aree costiere. L’aumento della temperatura media globale ha reso più intensi i processi di evaporazione in certe aree del mondo, influendo sulla concentrazione dei sali anche nei corsi d’acqua dolce. L’innalzamento dei mari, sempre dovuto al riscaldamento globale, è visto come un altro rischio per la contaminazione delle falde acquifere vicino alle coste che potrebbero aumentare le quantità di sali.
    I più ottimisti sostengono che i problemi energetici legati ai dissalatori potranno essere superati grazie allo sviluppo delle centrali nucleari a fusione, che metteranno a disposizione enormi quantità di energia a una frazione dei prezzi attuali. La fusione porterebbe certamente a una riduzione del costo dell’energia senza paragoni nella storia umana, ma il suo sviluppo procede a rilento e richiederà ancora decenni, ammesso che possa mai portare a qualche applicazione tecnica su larga scala.
    Invece di fare affidamento su tecnologie di cui ancora non disponiamo, gli esperti consigliano di ripensare il modo in cui utilizziamo l’acqua dolce, riducendo il più possibile gli sprechi e ottimizzando i consumi in modo da avere necessità dei dissalatori solo dove non ci sono alternative. Nelle aree esposte stagionalmente alla siccità si dovrebbero invece costruire bacini per l’accumulo e la conservazione dell’acqua piovana, per esempio, insieme a impianti per la purificazione e il riciclo delle acque reflue. LEGGI TUTTO

  • in

    Lo scorso giugno è stato il più caldo mai registrato

    Secondo il Climate Change Service di Copernicus, il programma di collaborazione scientifica dell’Unione Europea che si occupa di osservazione della Terra, il mese di giugno è stato il più caldo mai registrato sulla Terra. La temperatura media globale è stata di 16,66 °C, cioè 0,14 °C più alta del precedente record, del giugno del 2023. Inoltre lo scorso giugno è stato il tredicesimo mese consecutivo considerato il più caldo mai registrato a livello globale rispetto ai mesi corrispondenti degli anni passati. Le stime di Copernicus sono realizzate usando diversi tipi di dati, tra cui le misurazioni dirette della temperatura fatte da reti di termometri presenti sulla terra e in mare e le stime dei satelliti. LEGGI TUTTO

  • in

    Le navi cargo dovrebbero andare più lentamente

    Caricamento playerBuona parte degli oggetti che usiamo ogni giorno, dai cellulari agli abiti passando per le banane, ha attraversato almeno un oceano dal momento in cui è stata prodotta a quello in cui è stata venduta. Ogni giorno migliaia di navi trasportano merci di ogni tipo producendo annualmente tra il 2 e il 3 per cento di tutta l’anidride carbonica che viene immessa nell’atmosfera attraverso le attività umane. È un settore con una forte dipendenza dai combustibili fossili, ma che potrebbe diminuire sensibilmente le proprie emissioni ricorrendo a una soluzione all’apparenza semplice, quasi banale: ridurre la velocità.
    L’idea non è di per sé rivoluzionaria – si conoscono da tempo gli intervalli entro cui mantenersi per ottimizzare i consumi – ma applicarla su larga scala non è semplice soprattutto in un settore dove la velocità viene spesso vista come una priorità e un valore aggiunto. Se si cambia il modo in cui sono organizzati i trasporti marittimi ci sono conseguenze per molti altri settori, che dipendono dalle consegne delle materie prime o dei prodotti finiti. Un ritardo può avere effetti sulla capacità di un’azienda di produrre automobili o di consegnarle in tempo nei luoghi del mondo dove la domanda per le sue auto è più alta, per esempio.
    La necessità di ridurre il rischio di ritardi ha portato a una pratica piuttosto comune nel settore nota come “Sail fast, then wait”, letteralmente: “Naviga veloce, poi aspetta”. Spesso le navi cargo effettuano il più velocemente possibile il proprio viaggio in modo da arrivare quasi sempre in anticipo a destinazione rispetto al momento in cui avranno il loro posto in porto per scaricare le merci. L’attesa in alcuni casi può durare giorni, nei quali le navi restano ferme al largo prima di ricevere l’assegnazione di un posto.
    Il “naviga veloce, poi aspetta” è diventato la norma per molti trasportatori marittimi in seguito all’adozione da parte di molte aziende della strategia “just in time”, che prevede di ridurre il più possibile i tempi di risposta delle aziende alle variazioni della domanda. È un approccio che ha tra gli obiettivi la riduzione al minimo dei tempi di magazzino, rendendo idealmente possibile il passaggio diretto dall’impianto di produzione al cliente finale. Ciò consente di ridurre i costi di conservazione delle merci e i rischi di avere periodi con molti prodotti invenduti, ma comporta una gestione molto più precisa delle catene di rifornimento perché un ritardo di un singolo fornitore o di una consegna può fare inceppare l’intero meccanismo.
    Chi si occupa del trasporto delle merci deve quindi garantire il più possibile la puntualità delle consegne: di conseguenza adotta varie strategie per ridurre i rischi di ritardi dovuti per esempio alle condizioni del mare poco favorevoli o imprevisti burocratici. In molti casi sono i clienti stessi a chiedere garanzie ai trasportatori sul ricorso al “naviga veloce, poi aspetta” per la gestione delle loro merci. Il risultato è in media un maggior consumo di carburante per raggiungere le destinazioni in fretta e una maggiore quantità di emissioni di gas serra, la principale causa del riscaldamento globale.
    Per provare a cambiare le cose e a ridurre consumi ed emissioni del settore, un gruppo di aziende e di istituzioni partecipa a Blue Visby Solution, una iniziativa nata pochi anni fa e che di recente ha avviato le prime sperimentazioni di un nuovo sistema per far rallentare le navi e ridurre i tempi di attesa nei porti. Il sistema tiene traccia delle navi in partenza e in arrivo e utilizza algoritmi e modelli di previsione per stimare l’affollamento nei porti, in modo da fornire alle singole navi indicazioni sulla velocità da mantenere per arrivare al momento giusto in porto. I modelli tengono in considerazione non solo il traffico marittimo, ma anche le condizioni meteo e del mare.
    (Cover Images via ZUMA Press)
    Il sistema è stato sperimentato con simulazioni al computer utilizzando i dati reali sulle rotte e il tempo impiegato per percorrerle di migliaia di navi cargo, in modo da verificare come le modifiche alla loro velocità potessero ridurre i tempi di attesa, i consumi e di conseguenza le emissioni di gas serra. Terminata questa fase di test, tra marzo e aprile di quest’anno Blue Visby ha sperimentato il sistema in uno scenario reale, grazie alla collaborazione con un produttore di cereali australiano che ha accettato di rallentare il trasporto da parte di due navi cargo delle proprie merci in mare.
    Il viaggio delle due navi cargo è stato poi messo a confronto con simulazioni al computer degli stessi viaggi effettuati alla normale velocità. Secondo Blue Visby, i viaggi rallentati hanno prodotto tra l’8 e il 28 per cento in meno di emissioni: l’ampio intervallo è dovuto alle simulazioni effettuate in scenari più o meno ottimistici, soprattutto per le condizioni meteo e del mare. Il rallentamento delle navi ha permesso di ridurre emissioni e consumi, con una minore spesa per il carburante. Parte del risparmio è servita per compensare i maggiori costi operativi legati al periodo più lungo di navigazione, ha spiegato Blue Visby.
    I responsabili dell’iniziativa hanno detto a BBC Future che l’obiettivo non è fare istituire limiti alla velocità di navigazione per le navi cargo, ma offrire un servizio che ottimizzi i loro spostamenti e il tempo che dividono tra la navigazione e la permanenza nei porti o nelle loro vicinanze. Il progetto non vuole modificare la durata di un viaggio, ma intervenire su come sono distribuite le tempistiche al suo interno. Se per esempio in un porto si forma una coda per l’attracco con lunghi tempi di attesa, Blue Visby può comunicare a una nave in viaggio verso quella destinazione di ridurre la velocità ed evitare lunghi tempi di attesa in prossimità del porto.
    La proposta ha suscitato qualche perplessità sia perché per funzionare bene richiederebbe la collaborazione per lo meno delle aziende e dei porti più grandi, sia perché potrebbero sempre esserci navi che decidono di mettere in pratica il “naviga veloce, poi aspetta”, magari per provare ad avvantaggiarsi rispetto a qualche concorrente. I sostenitori di Blue Visby riconoscono questo rischio, ma ricordano anche che i nuovi regolamenti e le leggi per ridurre le emissioni da parte del settore dei trasporti marittimi potrebbero favorire l’adozione del nuovo sistema, che porta comunque a una minore produzione di gas serra.
    (AP Photo/POLFOTO, Rasmus Flindt Pedersen)
    Il nuovo approccio non funzionerebbe comunque per tutti allo stesso modo. È considerato applicabile soprattutto per le navi portarinfuse, cioè utilizzate per trasportare carichi non divisi in singole unità (per esempio cereali o carbone), visto che hanno quasi sempre un solo cliente di riferimento e sono maggiormente coinvolte nella consegna di materie prime. Il sistema è invece ritenuto meno adatto per le navi portacontainer, che di solito coprono quasi sempre le stesse rotte e con i medesimi tempi per ridurre il rischio di girare a vuoto o di rimanere a lungo nei porti.
    Rallentare alcune tipologie di navi cargo potrebbe ridurre le emissioni, ma non può comunque essere considerata una soluzione definitiva al problema delle emissioni prodotte dal trasporto marittimo delle merci. Da tempo si discute della necessità di convertire le navi a carburanti meno inquinanti e di sperimentare sistemi ibridi, che rendano possibili almeno in parte l’impiego di motori elettrici e la produzione di energia elettrica direttamente a bordo utilizzando pannelli solari e pale eoliche.
    Il settore, insieme a quello aereo, è considerato uno dei più difficili da convertire a soluzioni meno inquinanti, anche a causa dell’attuale mancanza di alternative. Oltre alle condizioni meteo e del mare, i trasporti attraverso gli oceani sono inoltre esposti ai rischi legati alla pirateria e agli attacchi terroristici, che portano gli armatori a rivedere le rotte in alcuni casi allungandole e rendendo di conseguenza necessaria una maggiore velocità di navigazione per rispettare i tempi delle consegne. LEGGI TUTTO

  • in

    A giugno non si era mai formato un uragano forte come Beryl

    Caricamento playerNelle prime ore di lunedì un uragano chiamato Beryl ha raggiunto la zona del mar dei Caraibi in cui si trovano le Isole Sopravento Meridionali, di cui fanno parte gli stati di Grenada di Saint Vincent e Grenadine. Finora non ci sono notizie di danni, ma di Beryl si è già molto discusso tra i meteorologi perché è il primo uragano di categoria 4, cioè della seconda categoria più alta nella scala Saffir-Simpson delle tempeste tropicali, a essere registrato nel mese di giugno. Tale primato è probabilmente dovuto alle recenti condizioni meteorologiche degli oceani: le temperature particolarmente alte della superficie dell’acqua dell’Atlantico da un lato e lo sviluppo del fenomeno periodico conosciuto come La Niña nel Pacifico dall’altro.
    La stagione degli uragani nell’oceano Atlantico occidentale va all’incirca dall’inizio di giugno alla fine di novembre. Da quando disponiamo di dati satellitari accurati per tutto il bacino Atlantico, cioè dal 1966, il primo uragano della stagione si è formato, in media, intorno al 26 luglio. E generalmente i primi non raggiungono la categoria 4, come ha fatto invece Beryl il 30 giugno, quando i suoi venti hanno superato la velocità di 209 chilometri orari. Finora il più precoce uragano di categoria 4 che fosse stato registrato era stato l’uragano Dennis, l’8 luglio 2005. Anche quelli di categoria 3 sono sempre stati molto rari a giugno: da quando sono disponibili dati sulla velocità del vento ce n’erano stati solo due, l’uragano Alma del 6 giugno 1966 e l’uragano Audrey del 27 giugno 1957.
    Generalmente il mese in cui si formano più tempeste tropicali e di maggiore intensità nell’Atlantico settentrionale è agosto perché è il periodo dell’anno in cui le acque superficiali dell’oceano sono più calde. La temperatura degli strati superiori dell’acqua influisce sulle tempeste perché più sono caldi, maggiore è l’evaporazione e dunque la quantità di acqua presente nell’atmosfera che si può raccogliere nelle grandi nubi coinvolte nelle tempeste. Per questo gli scienziati dicono spesso, per farsi capire, che il calore degli stati superficiali dell’oceano è il carburante degli uragani.
    Di solito a giugno e a luglio le temperature dell’oceano non sono sufficientemente alte da favorire uragani molto distruttivi, ma nell’ultimo anno nell’Atlantico sono state raggiunte temperature più alte della norma, in parte per via del più generale riscaldamento globale causato dalle attività umane, che non riguarda solo l’atmosfera, in parte per altri fattori che gli scienziati stanno ancora studiando.
    L’altro fattore che contribuisce alla formazione degli uragani insieme alla temperatura degli strati più superficiali dell’acqua sono venti deboli. Infatti, mentre se soffiano venti forti l’evaporazione diminuisce, con poco vento aumenta; l’assenza di vento inoltre non fa disperdere le grosse nubi create dall’alta evaporazione, quelle da cui poi si formano le tempeste. E attualmente nella fascia tropicale dell’Atlantico i venti sono deboli perché si sta sviluppando “La Niña”, uno dei complessi di eventi atmosferici che periodicamente influenzano il meteo di varie parti del mondo.
    La Niña avviene nell’oceano Pacifico meridionale, e come il più noto El Niño (che deve il suo nome, “il bambino” in spagnolo, al Natale) fa parte dell’ENSO, acronimo inglese di “El Niño-Oscillazione Meridionale”, un fenomeno che dipende da variazioni di temperatura nell’oceano e di pressione nell’atmosfera. La Niña è la fase di raffreddamento dell’ENSO e ha tra i suoi vari effetti lo sviluppo di siccità nell’ovest degli Stati Uniti, precipitazioni particolarmente abbondanti in paesi come il Pakistan, la Thailandia e l’Australia, e temperature più basse in molte regioni del Sudamerica e dell’Africa e in India. Un altro effetto è l’indebolimento dei venti sull’Atlantico tropicale, dunque un’intensificazione del numero delle tempeste tropicali e della loro forza.
    Già a maggio la National Oceanic and Atmospheric Administration (NOAA), l’agenzia statunitense che si occupa degli studi meteorologici e oceanici, aveva previsto che la stagione degli uragani di quest’anno sarebbe stata più intensa della media per via delle condizioni meteorologiche. La NOAA ha stimato che si svilupperanno tra le 17 e le 25 tempeste tropicali nel 2024, di cui tra gli 8 e i 13 uragani: in media si registrano 14 tempeste tropicali in un anno nell’Atlantico. Nel 2020, in occasione dell’ultima Niña, c’erano state 30 tempeste tropicali e 14 uragani.
    All’avvicinarsi alle Isole Sopravento Meridionali e a Barbados l’uragano Beryl ha inizialmente perso intensità e la velocità dei suoi venti è diminuita al punto da rientrare nella categoria 3 della scala Saffir-Simpson (con venti di 178–208 chilometri orari); poi però si è nuovamente rafforzato, tornando alla categoria 4. In questa parte dei Caraibi era dall’uragano Ivan del 2004 che non arrivava una tempesta tanto intensa.

    – Leggi anche: Le categorie per classificare gli uragani non bastano più? LEGGI TUTTO

  • in

    8 persone su 10 vorrebbero che i loro governi facessero di più contro la crisi climatica

    Caricamento playerIl Programma delle Nazioni Unite per lo sviluppo (UNDP) ha pubblicato i risultati del Peoples’ Climate Vote 2024, il più grande sondaggio mai condotto dall’ONU sul tema del cambiamento climatico: sono state intervistate più di 75mila persone provenienti da 77 paesi che parlano 87 lingue diverse.
    Secondo i risultati aggregati globali la stragrande maggioranza di loro è insoddisfatta del modo in cui i governi stanno gestendo la crisi climatica: l’80 per cento delle persone intervistate, che dovrebbero essere un campione rappresentativo della popolazione globale, vorrebbe che i loro governi facessero di più per affrontare la crisi climatica, e l’86 per cento ritiene che sarebbe necessario mettere da parte le rivalità nazionali per lavorare a una soluzione comune. In Italia questi valori sono ancora più alti: il 93 per cento delle 900 persone italiane intervistate è d’accordo con entrambe le dichiarazioni.
    Altri risultati interessanti riguardano la cosiddetta “ansia climatica” e la transizione da combustibili fossili a energia rinnovabile. Il 56 per cento degli intervistati ha detto di pensare al cambiamento climatico quotidianamente o settimanalmente, un risultato a cui l’Italia si allinea, e il 53 per cento di essere più preoccupato rispetto all’anno scorso per questo tema: in Italia a rispondere positivamente a questa domanda è stato il 65 per cento degli intervistati. Questi risultati arrivano però fino al 71 per cento nei nove Piccoli Stati insulari in via di sviluppo (SIDS) in cui sono state condotte le interviste: sono quegli stati che rischiano di finire presto sotto il livello del mare e le cui popolazioni si stanno già parzialmente trasferendo in altri paesi. In generale, più persone che vivono in paesi meno sviluppati hanno detto che il cambiamento climatico sta già influenzando alcune importanti scelte di vita, come il luogo dove abitare o lavorare.

    – Leggi anche: Per quanto tempo esisterà ancora Tuvalu?

    Il 72 per cento degli intervistati si è poi detto a favore di una rapida transizione dai combustibili fossili a fonti di energia meno inquinanti. Risultati molto alti si sono registrati in alcuni paesi che sono fra i principali produttori o consumatori di combustibili fossili: in Nigeria era d’accordo l’89 per cento delle persone intervistate (lo stesso risultato dell’Italia e della Turchia); in Brasile era l’81 per cento; in Cina l’80; in Iran il 79 per cento e in Germania, Regno Unito e Arabia Saudita, il 76. Risultati molto bassi in questa categoria sono stati invece registrati in Russia, dove solo il 16 per cento degli intervistati si è detto d’accordo con questa dichiarazione.
    È stato inoltre notato come le donne si siano dimostrate più favorevoli all’impegno pubblico per il contrasto del cambiamento climatico. In cinque grandi paesi (Australia, Canada, Francia, Germania e Stati Uniti) la differenza di genere era tra i 10 e i 17 punti percentuali.

    – Leggi anche: Il cambiamento climatico, le basi

    Infine una domanda del sondaggio riguarda la responsabilità dei paesi più ricchi e con economie più sviluppate (che sono principalmente i paesi europei e gli Stati Uniti) nei confronti di quelli più poveri, che non hanno avuto la possibilità di industrializzarsi quando c’erano molte meno regole sull’inquinamento, e che in molti casi sono i più esposti agli effetti negativi del cambiamento climatico. A livello globale il 79 per cento degli intervistati ha detto che i paesi ricchi dovrebbero aiutare di più i paesi in via di sviluppo.
    Da anni questo tema è tra quelli al centro delle conferenze sul clima delle Nazioni Unite (COP).
    Alla COP28 di Dubai del 2023 i paesi con economie sviluppate si sono impegnati per la prima volta a versare circa 380 milioni di euro in un fondo di compensazione per i danni e le perdite causate dal cambiamento climatico nei paesi più in difficoltà: si tratta di una cifra molto piccola, vista l’entità dei possibili danni. I paesi che hanno preso un impegno maggiore sono quelli dell’Unione Europea, mentre un contributo più piccolo è stato promesso dagli Stati Uniti, che non apprezzano che alcuni paesi, specialmente la Cina che è fra i principali produttori di combustibili fossili al mondo, vogliano ancora definirsi paesi in via di sviluppo.
    Proprio negli Stati Uniti il 64 degli intervistati si è detto favorevole all’aumento degli aiuti ai paesi poveri, mentre il 28 per cento ha sostenuto che i paesi ricchi debbano aiutare meno di quanto non lo stiano facendo adesso; nella media globale, solo il 6 per cento pensa che gli aiuti debbano diminuire. In altri paesi occidentali come la Francia, la Germania e il Regno Unito le persone che sostengono che i paesi ricchi dovrebbero fornire più aiuti sono le stesse degli Stati Uniti, ma quasi nessuno pensa che gli aiuti dovrebbero diminuire: un terzo degli intervistati sostiene piuttosto che dovrebbero rimanere uguali a quelli attuali. In questo quadro l’Italia si trova invece più d’accordo con i paesi in via di sviluppo, dato che oltre il 90 per cento degli intervistati è d’accordo con l’idea che i paesi ricchi forniscano più aiuti; solo il 5 per cento sostiene che questi debbano rimanere invariati e nessuno degli intervistati è d’accordo con una loro diminuzione.

    – Leggi anche: I paesi più ricchi aiuteranno gli altri ad affrontare i danni del cambiamento climatico?

    Secondo la direttrice della sezione dell’UNDP che si occupa dei cambiamenti climatici, Cassie Flynn, i dati sulla volontà di abbandonare l’uso di combustibili fossili sono notevoli, ma in generale questo largo consenso non dovrebbe stupirci: «Gli eventi estremi fanno già parte della nostra vita quotidiana», ha detto Flynn. «Dagli incendi boschivi in Canada alla siccità in Africa orientale, fino alle inondazioni negli Emirati Arabi Uniti e in Brasile, le persone vivono la crisi climatica», ha aggiunto. Proprio in queste settimane per esempio migliaia di persone stanno morendo a causa del caldo in diversi paesi del mondo, specialmente in India, che sta attraversando una delle peggiori ondate di calore della sua storia da oltre un mese, e in Arabia Saudita, dove si è appena concluso lo Hajj, il consueto pellegrinaggio annuale dei fedeli dell’Islam verso la Mecca.

    – Leggi anche: A New Delhi manca l’acqua e fa caldissimo

    Il sondaggio è stato svolto dall’UNDP in collaborazione con l’Università di Oxford, nel Regno Unito, e la società internazionale di sondaggi GeoPoll. I ricercatori dell’Università di Oxford hanno stilato una lista di 15 domande da porre durante le interviste e hanno poi elaborato le risposte, ponderando il campione per renderlo rappresentativo dei profili di età, genere e istruzione della popolazione dei paesi coinvolti. GeoPoll ha condotto le interviste tramite chiamate telefoniche randomizzate al cellulare, ampliando quindi più possibile le persone raggiungibili. La maggior parte dei paesi è rappresentata da un gruppo di intervistati che va dalle 800 alle 1.000 persone (in Italia sono state 900). Il numero di intervistati non è relativo alla grandezza dello stato, dato che per esempio la Cina, con una popolazione di 1,4 miliardi di persone, è rappresentata da 921 persone, circa cento in meno del Buthan, dove la popolazione si aggira intorno alle 790mila persone.
    Secondo gli autori le stime a livello nazionale hanno margini di errore non superiori ai 3 punti percentuali in più o in meno, che diventano molto più bassi quando si tratta di stime globali.
    Un problema piuttosto comune dei sondaggi di questo tipo è il fatto che a rispondere al telefono e ad accettare di partecipare alla ricerca siano spesso persone con un alto livello di istruzione e che sono già più informate della media sul tema. L’UNDP ha però tenuto a specificare in questo caso che oltre il 10 per cento del campione totale comprendeva persone che non sono mai andate a scuola. Di questi 9.321 intervistati, 1.241 erano donne over 60 che non avevano mai neanche frequentato le scuole elementari, uno dei gruppi più difficili da raggiungere.
    Una prima edizione del sondaggio, che aveva coinvolto 50 paesi, era stata realizzata nel 2021 ma le persone erano state raggiunte attraverso annunci pubblicitari in famose app di gioco per cellulari, che escludevano intere fasce della popolazione anche solo per il fatto che per usare queste app bisognava essere connessi a internet. I dati delle due ricerche non sono quindi comparabili. LEGGI TUTTO