More stories

  • in

    Giulia Salemi mostra emozionata l’evoluzione del pancione arrivata al settimo mese

    Gossip.it © 2000 – 2024. Contents, marketing and advertising managed by Mediafun Ltd. Vat: BG205038334.
    GossipNews, quotidiano di cronaca rosa, gossip, costume e società fondato da Paola Porta. Registrazione tribunale di Napoli n.5246 del 18 ottobre 2001. Registrazione al ROC n.14687 del 2 gennaio 2007. PWD srl, P.Iva: 06523591219. All rights reserved. LEGGI TUTTO

  • in

    Tra i mammiferi sono più grandi i maschi o le femmine?

    Caricamento playerNel suo trattato L’origine dell’uomo e la selezione sessuale del 1871, il celebre naturalista britannico Charles Darwin scrisse che nel regno animale «in generale i maschi sono più forti e più grandi delle femmine», occupandosi poi in particolare dei mammiferi per spiegare alcune caratteristiche degli esseri umani. Darwin non era l’unico a pensarla in quel modo e a 150 anni di distanza quella convinzione continua a essere piuttosto condivisa non solo tra gli addetti ai lavori, ma anche nel senso comune.
    Eppure, secondo una ricerca da poco pubblicata, quella convinzione è probabilmente errata e non ci sono elementi per sostenere che tra i mammiferi i maschi siano più grandi delle femmine. Nella maggior parte dei casi, almeno.
    Il nuovo studio, pubblicato sulla rivista scientifica Nature Communications, è stato guidato da Kaia J. Tombak, una ricercatrice della Princeton University (Stati Uniti) che alcuni anni fa aveva partecipato a un seminario online sui livelli di aggressività in alcune specie i cui maschi e femmine hanno la medesima stazza. Discutendo con i colleghi del corso, Tombak si era accorta che mancavano dati per formulare ipotesi credibili e decise quindi di dedicarsi all’argomento, provando in primo luogo a capire se esistessero effettivamente differenze nella stazza tra varie specie di mammiferi.
    Man mano che cercava il materiale insieme a due colleghi, Tombak notò quanto fosse difficile avere dati coerenti e come la questione fosse stata tutto sommato trascurata in passato, fatta eccezione per qualche studio risalente a una cinquantina di anni fa. Il suo lavoro di ricerca era quindi consistito nel raccogliere dati dalla letteratura scientifica tenendo in considerazione le informazioni sulla massa che mediamente raggiungono gli individui adulti in determinate specie. La massa non è l’unico indicatore per determinare la grandezza di un mammifero, ma è il dato che ricorre più spesso (banalmente perché è più semplice pesare o fare la stima del peso di un animale rispetto a valutarne il volume).
    Non potendo valutare tutte le 6.400 specie di mammiferi esistenti di cui siamo a conoscenza (le stime variano in base alle classificazioni), il gruppo di ricerca ha seguito un approccio statistico, costruendo un campione basato sul 5-6 per cento delle specie per ciascuno dei 16 ordini di mammiferi che contengono almeno una decina di specie; all’elenco sono state poi aggiunte altre specie, selezionate per rendere ancora più equilibrato e rappresentativo il campione. La lista finale conteneva 429 specie con informazioni sulla massa corporea di individui adulti sia di sesso maschile sia di sesso femminile.
    L’analisi finale ha tracciato una situazione diversa da quella descritta un secolo e mezzo fa. Tra le 429 specie di mammiferi prese in considerazione, i maschi avevano una stazza più grande delle femmine solo nel 45 per cento dei casi. Nel 39 per cento dei casi gli individui appartenenti ai due sessi avevano sostanzialmente la stessa massa e nel 16 per cento dei casi erano le femmine ad avere una massa superiore a quella dei maschi. I dati, dice lo studio, sembrano indicare che la maggiore grandezza degli individui di sesso maschile non sia la norma, o per meglio dire che non ci sia una regola unica attraverso le specie di mammiferi sulla differenza di stazza tra i sessi.
    (Nature Communications)
    I maschi con massa superiore a quella delle femmine sono risultati più frequenti tra i carnivori, gli ungulati e alcune specie di primati. Questi animali sono di solito più studiati di altri quando si tratta di valutare le differenze dovute al sesso, di conseguenza questa potrebbe essere una delle cause del perdurare della convinzione sulla maggiore dimensione dei maschi in generale tra i mammiferi.
    Roditori e pipistrelli sono relativamente meno studiati, nonostante tutte le loro specie messe insieme costituiscano circa la metà di quelle di mammiferi. Dallo studio è emerso che nel 48 per cento delle specie di roditori prese in considerazione non c’erano differenze di stazza, mentre nel 44 per cento i maschi erano più grandi. Nel caso dei pipistrelli il gruppo di ricerca ha notato che nel 46 per cento delle specie analizzate le femmine erano più grandi.
    La differenza tra individui appartenenti alla medesima specie ma di sesso diverso (“dimorfismo sessuale”) è studiata da tempo, proprio perché attraverso lo studio delle differenze si possono comprendere alcune caratteristiche tipiche di una specie. Le ricerche si sono dedicate anche alle differenze di stazza e una delle teorie più condivise dice che in molte specie i maschi dei mammiferi sono più grandi perché devono competere tra loro per contendersi le femmine. La competizione implica spesso un confronto fisico, di conseguenza nel corso dell’evoluzione sarebbero stati avvantaggiati gli individui casualmente nati di stazza maggiore. Per alcune specie di grandi carnivori è probabilmente vero, anche sulla base delle osservazioni del comportamento animale, ma è difficile applicare la medesima ipotesi a molte altre specie di mammiferi.
    Tra i roditori e i pipistrelli le cose funzionano diversamente e la minore quantità di studi sul dimorfismo sessuale di questi animali forse spiega in parte perché sia ancora diffusa la convinzione che in generale tra i mammiferi i maschi siano più grandi. Nel caso dei pipistrelli, per esempio, avere una stazza maggiore è probabilmente un vantaggio per le femmine che devono volare anche durante la gravidanza, quando la loro massa è più grande (gli uccelli non hanno questo problema, visto che depongono le uova): hanno bisogno di più forza e capacità alare.
    Il nuovo studio cita il lavoro della biologa statunitense Katherine Ralls che negli anni Settanta pubblicò una ricerca dove metteva in dubbio la convinzione sulla maggiore stazza degli individui maschi tra i mammiferi, arrivando a conclusioni simili a quelle del gruppo di ricerca di Tombak. All’epoca Ralls aveva analizzato i dati su alcune specie di mammiferi segnalando come fossero comuni femmine di maggiori dimensioni rispetto ai maschi. Ralls aveva ipotizzato che gli individui di sesso femminile fossero più grandi in alcune specie perché questo aumentava la probabilità di produrre nuovi nati più resistenti, dunque con minori rischi di morire nelle prime fasi dello sviluppo. L’ipotesi è discussa da tempo e finora non sono emersi elementi per confermarla.
    La ricerca di Tombak è stata accolta con interesse da chi si occupa di evoluzione, ma alcuni esperti hanno fatto notare che per quanto statisticamente rilevante lo studio è basato su una quantità limitata di specie di mammiferi e saranno quindi necessari ulteriori studi. La questione sarà ancora discussa a lungo e contribuirà a comprendere meglio diversità e somiglianze tra le tante specie nella grande classe dei mammiferi, di cui facciamo parte. LEGGI TUTTO

  • in

    Come abbiamo perso la coda

    Da bambino Bo Xia si era chiesto qualche volta come mai non avesse la coda come altri animali, ma non avrebbe mai immaginato che da adulto avrebbe dedicato buona parte del proprio dottorato in biologia a questo argomento. Non lo pensava nemmeno mentre studiava alla New York University, ma le cose cambiarono dopo che ebbe un piccolo infortunio al coccige, la parte finale della colonna vertebrale, l’ultima testimonianza della coda che milioni di anni fa possedevano gli antenati degli umani moderni. Quell’incidente portò Xia a interessarsi nuovamente alla coda e a pubblicare, dopo una lunga e difficile ricerca, uno studio che aiuta a spiegare i meccanismi genetici che ci portarono a perderla.Tra i vertebrati la coda è un elemento estremamente comune e tutti i mammiferi ne sviluppano una durante lo sviluppo embrionale, anche se questa non necessariamente è poi presente alla nascita. Nel caso degli esseri umani, per esempio, la coda scompare all’incirca all’ottava settimana di gravidanza e ne rimangono solo alcune piccole tracce che formano il coccige (le sue dimensioni variano molto a seconda delle persone).
    La maggior parte delle scimmie ha la coda, ma fanno eccezione gli ominoidi (Hominoidea), cioè gli esseri umani e quelle che vengono spesso definite “scimmie antropomorfe” (oranghi, gibboni, gorilla, scimpanzé). Questa netta distinzione ha fatto ipotizzare da tempo che la perdita della coda fosse coincisa con la fase in cui gli ominoidi si differenziarono dall’antenato in comune con le scimmie circa 25 milioni di anni fa.
    Circa tre anni fa, quando era ancora convalescente dall’incidente al coccige, Xia iniziò ad approfondire le proprie conoscenze sui geni sospettati di essere coinvolti nello sviluppo della coda. Si interessò agli studi della scienziata ucraina Nadine Dobrovolskaya-Zavadskaya, che alla fine degli anni Venti del secolo scorso aveva analizzato alcuni topi dalla coda insolitamente corta, arrivando alla conclusione che la loro condizione fosse determinata da una particolare mutazione in un gene chiamato T. Negli anni seguenti altre ricerche avrebbero portato a identificare un gene simile anche negli esseri umani, oggi noto come gene TBXT e molto conosciuto dai genetisti e da chi si occupa di evoluzione umana.
    Xia si mise a confrontare il gene TBXT degli esseri umani con il suo equivalente in altri ominoidi e notò che avevano in comune un pezzetto di DNA (una “sequenza alu”), assente invece nelle specie di primati con la coda. Insieme ad alcuni colleghi, Xia approfondì la questione e preparò una ricerca, che fu pubblicata nel settembre del 2021 in una forma preliminare, quindi senza avere ancora ricevuto una revisione da parte di studiosi che non avevano partecipato alla ricerca (il processo che viene chiamato di “peer review”).
    Nel loro studio, Xia e colleghi spiegavano che quel pezzetto di DNA poteva far sì che il gene TBXT portasse talvolta alla produzione di una proteina lievemente diversa rispetto a quella che si produce normalmente. Secondo il gruppo di ricerca ciò avveniva nella fase di trascrizione del materiale genetico necessaria per produrre la proteina e a sostegno di questa ipotesi portava alcuni esperimenti condotti sui topi. Modificando le caratteristiche del gene, Xia era infatti riuscito a ottenere topi con code più corte del solito o completamente assenti, oppure con code lunghe e attorcigliate.
    La ricerca era promettente, ma non dimostrava che qualcosa di simile avvenisse anche con il gene TBXT vero e proprio. Il problema fu segnalato da chi era incaricato di effettuare il processo di peer review, con la richiesta a Xia e colleghi di approfondire lo studio e portare nuove dimostrazioni. Gli esperimenti di laboratorio, in parte già avviati, avrebbero alla fine richiesto più di due anni per essere realizzati e rivisti. Dopo 900 giorni, lo studio è stato infine pubblicato sulla rivista scientifica Nature questa settimana.
    Come spiegano Xia e colleghi, gli esperimenti aggiuntivi effettuati trasferendo il pezzo di DNA di TBXT nel gene equivalente dei topi non hanno portato a cambiamenti significativi nella caratteristica della proteina, di conseguenza i topi avevano code con lunghezza nella media. In un’altra serie di esperimenti, invece, il gruppo di ricerca è riuscito a simulare nei topi ciò che avviene negli esseri umani, portando alla nascita di topi con una coda corta o completamente assente.
    Lo studio di Xia e colleghi è stato accolto con grande interesse, non solo per i nuovi elementi che porta su un punto importante dell’evoluzione umana, ma anche per le difficoltà che il gruppo di ricerca ha dovuto affrontare nel realizzare una grande quantità di modelli in laboratorio. I 900 giorni di lavoro successivi alla presentazione della ricerca preliminare hanno reso più solida e affidabile la ricerca, dimostrando come alcuni elementi mobili del DNA possono influire in modi talvolta inattesi nei processi evolutivi.
    La ricerca aiuta a capire come gli ominoidi persero la coda, ma non spiega completamente perché, una questione del resto molto più complessa e che forse non avrà mai risposta. Una delle ipotesi più condivise è che perdere la coda avesse costituito a un certo punto un vantaggio evolutivo, favorendo l’andatura eretta. Studi su specie molto antiche di primati ora estinte ipotizzano che la capacità di utilizzare prevalentemente i due arti inferiori per muoversi iniziò a svilupparsi nei nostri antenati che vivevano ancora tra le fronde degli alberi, diventando poi un elemento centrale per il bipedismo al suolo.
    Non tutti sono però convinti da questa spiegazione, semplicemente perché ci sono elementi per ritenere che la coda non impedisca di sviluppare il bipedismo. Ancora oggi ci sono alcune specie di primati come il cebo barbuto (Sapajus libidinosus) che utilizzano principalmente gli arti inferiori per muoversi, ma che all’occorrenza sfruttano la coda per mantenersi meglio in equilibrio.
    Un’altra ipotesi è che, nei grandi cambiamenti di territorio e clima che si verificarono 25 milioni di anni fa nei territori che più o meno oggi corrispondono all’Africa orientale, alcune popolazioni di ominoidi rimasero a lungo isolate e nei processi casuali di trascrizione del materiale genetico di generazione in generazione (deriva genetica) si produssero le alterazioni nel gene TBXT. Seguendo questa ipotesi, fu in un certo senso l’isolamento di alcune popolazioni con un numero ridotto di individui a far sì che si avviasse il processo di perdita della coda.
    Il gene TBXT è studiato da tempo ed è probabile che il lavoro di Xia e colleghi porti altri gruppi di ricerca ad approfondire la storia della nostra coda, che non c’è più. LEGGI TUTTO